The Matched z-Transform

Two transform methods are available: the bilinear transform and the matched z-transform. please dont rip this site

In most circumstances the bilinear transform is superior. The principal disadvantage of the BLT is that the frequency scale is ``warped'', i.e. distorted in a non-linear fashion, so that, e.g. for a LP filter,

where fc is the corner frequency and fs is the sampling frequency.

In most cases this is just what you want: for a LP or BP filter you want a response which is exactly zero at the Nyquist frequency (fs/2), and for a HP filter you want the response to be exactly unity at this frequency.

The one exception to this is the Bessel filter. The only advantage of a Bessel design over a Butterworth or Chebyshev is that the phase response is nearly linear throughout the passband, i.e. the group delay is almost constant throughout the passband. The ``warping'' inherent in the bilinear transform method upsets this linearity. To get round this problem, tick (check) the ``matched z-transform'' box. The matched z-transform does not warp the frequency scale, so a digital Bessel filter designed by this method will have the near-linear phase characteristic you'd like to see.

In fact, a low-pass filter designed by MZT is impulse-invariant with the analogue prototype, which means that it has the same impulse response, so it behaves identically to the corresponding analogue filter. Strictly speaking this is true only if you ignore aliasing: if the response of the digital LP filter is not negligible at fs/2, the response in the vicinity of this frequency will be perturbed by the spurious response at frequencies above fs/2, which are folded down into the band below fs/2. That's why you're advised to check the frequency response graphs carefully if you use this method!

A further advantage of the MZT is that the number of zeros is reduced, compared with the BLT case. Further information is given in the PostScript documentation for the mkfilter program. An LP filter designed by MZT has no z-plane zeros. This means that no xvals vector is required; this improves efficiency. Have a look at the generated code.

To summarize: you might use the matched z-transform if

Tony Fisher /

See also:

file: /Techref/uk/ac/york/cs/www-users/http/~fisher/mkfilter/mzt.htm, 3KB, , updated: 2000/4/4 10:51, local time: 2018/1/23 10:04,

 ©2018 These pages are served without commercial sponsorship. (No popup ads, etc...).Bandwidth abuse increases hosting cost forcing sponsorship or shutdown. This server aggressively defends against automated copying for any reason including offline viewing, duplication, etc... Please respect this requirement and DO NOT RIP THIS SITE. Questions?
Please DO link to this page! Digg it! / MAKE! / 

<A HREF=""> The Matched Z-Transform </A>

After you find an appropriate page, you are invited to your to this massmind site! (posts will be visible only to you before review) Just type in the box and press the Post button. (HTML welcomed, but not the <A tag: Instead, use the link box to link to another page. A tutorial is available Members can login to post directly, become page editors, and be credited for their posts.

Link? Put it here: 
if you want a response, please enter your email address: 
Attn spammers: All posts are reviewed before being made visible to anyone other than the poster.
Did you find what you needed?


Welcome to!


Welcome to!