; ****************************************************************************** ; SX Demo Enhanced 2.0 ; ; ; Length: 666 bytes (total) ; Authors: Parallax Inc., Craig Webb ; Written: 97/03/10 to 98/6/08 ; ; This program implements eight virtual peripherals on Parallax, Inc.'s ; SX DEMO board. The various virtual peripherals are as follows: ; ; 1) 16-bit timer/frequency outputs (2) ; 2) Pulse-Width Modulated outputs (2) ; 3) Analog-to-Digital Converter(s) (ADC) (2) ; 4) Universal Asynchronous Receiver Transmitter (UART) ; 5) Time clock (keeps count in msec) ; 6) Software execution path switcher ; 7) Push button detection & debounce (4) ; 8) I2C serial (EEPROM) interface ; ; All of these peripherals (except the I2C interface) take advantage ; of the SX's internal RTCC-driven interrupt so that they can operate ; in the background while the main program loop is executing. ; ; Improvements over SX Demo original version: ; - I2C protocol EEPROM store/retrieve subroutines added ; - push button detection, debounce, and action vectors added ; - button presses signaled through UART interface ; - time clock (counts in msec) added with path switcher ; - 3 new UART user-interface functions added to access EEPROM ; - faster, shorter timer/freqency output code ; - faster, shorter analog to digital converter code ; - bug removed from adc code (adc value=0FFh when input=5V) ; - faster, shorter UART transmit code ; - interrupt vector example added ; - byte received flag (rx_flag) moved to common register bank ; ;****************************************************************************** ; ;****** Assembler directives ; ; uses: SX28AC, 2 pages of program memory, 8 banks of RAM, high speed osc. ; operating in turbo mode, with 8-level stack & extended option reg. ; DEVICE pins28,pages2,banks8,oschs DEVICE turbo,stackx,optionx ID 'SXDemo20' ;program ID label RESET reset_entry ;set reset/boot address ; ;******************************* Program Variables *************************** ; ; Port Assignment: Bit variables ; scl EQU RA.0 ;I2C clock sda EQU RA.1 ;I2C data I/O rx_pin EQU ra.2 ;UART receive input tx_pin EQU ra.3 ;UART transmit output led_pin EQU rb.6 ;LED output spkr_pin EQU rb.7 ;Speaker output pwm0_pin EQU rc.0 ;Pulse width mod. PWM0 output pwm1_pin EQU rc.2 ;Pulse width mod. PWM1 output adc0_out_pin EQU rc.4 ;ADC0 input pin adc0_in_pin EQU rc.5 ;ADC0 output/calibrate pin adc1_out_pin EQU rc.6 ;ADC1 input pin adc1_in_pin EQU rc.7 ;ADC1 output/calibrate pin button0 EQU RB.0 ;Push button 0 button1 EQU RB.1 ;Push button 1 button2 EQU RB.2 ;Push button 2 button3 EQU RB.3 ;Push button 3 ; ; ;****** Register definitions (bank 0) ; org 8 ;start of program registers main = $ ;main bank ; temp ds 1 ;temporary storage byte ds 1 ;temporary UART/I2C shift reg. cmd ds 1 number_low ds 1 ;low byte of rec'd value number_high ds 1 ;high byte of rec'd value hex ds 1 ;value of rec'd hex number string ds 1 ;indirect ptr to output string flags DS 1 ;program flags register ; got_hex EQU flags.0 ;=1 if hex value after command seq_flag EQU flags.1 ;I2C: R/W mode (if sequential=1) got_ack EQU flags.2 ; if we got ack signal erasing EQU flags.3 ; high while erasing eeprom rx_flag EQU flags.4 ;signals when a byte is received ; org 30h ;bank1 variables timers = $ ;timer bank ; timer_low ds 1 ;timer value low byte timer_high ds 1 ;timer value high byte timer_accl ds 1 ;timer accumulator low byte timer_acch ds 1 ;timer accumulator high byte freq_low ds 1 ;frequency value low byte freq_high ds 1 ;frequency value high byte freq_accl ds 1 ;frequency accumulator low byte freq_acch ds 1 ;frequency accumulator high byte ; ; org 50h ;bank2 variables analog = $ ;pwm and ADC bank ; port_buff ds 1 ;buffer - used by all pwm0 ds 1 ;pwm0 - value pwm0_acc ds 1 ; - accumulator pwm1 ds 1 ;pwm1 - value pwm1_acc ds 1 ; - accumulator adc0 ds 1 ;adc0 - value adc0_count ds 1 ; - real-time count adc0_acc ds 1 ; - accumulator adc1 ds 1 ;adc1 - value ;adc1_count ds 1 ; - real-time count adc1_acc ds 1 ; - accumulator ; ; org 70h ;bank3 variables serial = $ ;UART bank ; tx_high ds 1 ;hi byte to transmit tx_low ds 1 ;low byte to transmit tx_count ds 1 ;number of bits sent tx_divide ds 1 ;xmit timing (/16) counter rx_count ds 1 ;number of bits received rx_divide ds 1 ;receive timing counter rx_byte ds 1 ;buffer for incoming byte ; ; The following three values determine the UART baud rate. ; The value of baud_bit and int_period affect the baud rate as follows: ; Baud rate = 50MHz/(2^baud_bit * int_period * RTCC_prescaler) ; Note: 1 =< baud_bit =< 7 ; *int_period must <256 and longer than the length of the slowest ; possible interrupt sequence in instruction cycles. ; Changing the value of int_period will affect the ; rest of the virtual peripherals due to timing issues. ; The start delay value must be set equal to (2^baud_bit)*1.5 + 1 ; ; *** 19200 baud baud_bit = 4 ;for 19200 baud start_delay = 16+8+1 ; " " " int_period = 163 ; " " " ; ; *** 2400 baud (for slower baud rates, increase the RTCC prescaler) ;baud_bit = 7 ;for 2400 baud ;start_delay = 128+64+1 ; " " " ;int_period = 163 ; " " " ; ; *** 115.2k baud (for faster rates, reduce int_period - see above*) ;baud_bit = 1 ;for 115.2K baud ;start_delay = 2+1+1 ; " " " ;int_period = 217 ; " " " ; org 90H ;bank4 variables I2C EQU $ ;I2C bank ; data DS 1 ;data byte from/for R/W address DS 1 ;byte address count DS 1 ;bit count for R/W delay DS 1 ;timing delay for write cycle byte_count DS 1 ;number of bytes in R/W num_bytes DS 1 ;number of byte to view at once save_addr DS 1 ;backup location for address ; in_bit EQU byte.0 ;bit to receive on I2C out_bit EQU byte.7 ;bit to transmit on I2C ; control_r = 10100001b ;control byte: read E2PROM control_w = 10100000b ;control byte: write E2PROM portsetup_r = 00000110b ;Port A config: read bit portsetup_w = 00000100b ;Port A config: write bit eeprom_size = 128 ;storage space of EEPROM ; t_all = 31 ;bit cycle delay (62=5 usec) ; org 0B0H ;bank5 variables clock EQU $ ;clock bank buttons EQU $ ;push button bank ; time_base_lo DS 1 ;time base delay (low byte) time_base_hi DS 1 ;time base delay (high byte) msec_lo DS 1 ;millisecond count (low) msec_hi DS 1 ;millisecond count (high) ; tick_lo = 80 ;instruction count for tick_hi = 195 ; 50MHz xtal, turbo, prescaler=1 ; debounce0 DS 1 ;push button 0 debounce count debounce1 DS 1 ;push button 1 debounce count debounce2 DS 1 ;push button 2 debounce count debounce3 DS 1 ;push button 3 debounce count pbflags DS 1 ;push button status flags pb0_pressed EQU pbflags.0 ;push button 0 action status pb1_pressed EQU pbflags.1 ;push button 1 action status pb2_pressed EQU pbflags.2 ;push button 2 action status pb3_pressed EQU pbflags.3 ;push button 3 action status pb0_down EQU pbflags.4 ;push button 0 down status pb1_down EQU pbflags.5 ;push button 1 down status pb2_down EQU pbflags.6 ;push button 2 down status pb3_down EQU pbflags.7 ;push button 3 down status ; hold_bit = 3 ;debounce period = 2^hold_bit msec ; ;*************************** INTERRUPT VECTOR ****************************** ; ; Note: The interrupt code must always originate at 0h. ; A jump vector is not needed if there is no program data that needs ; to be accessed by the IREAD instruction, or if it can all fit into ; the lower half of page 0 with the interrupt routine. ; ORG 0 ;interrupt always at 0h ; JMP interrupt ;interrupt vector ; ;***************************** PROGRAM DATA ******************************** ; ; String data for user interface (must be in lower half of memory page 0) ; ; <this data has been strategically placed within the interrupt routine, ; after the path switch VP in order to save the interrupt jump vector byte ; and the three required instruction cycles.> ; ;**************************** INTERRUPT CODE ******************************* ; ; Note: Care should be taken to see that any very timing sensitive routines ; (such as adcs, etc.) are placed before other peripherals or code ; which may have varying execution rates (like the UART, for example). ; interrupt ;beginning of interrupt code ; ;****** Virtual Peripheral: TIMERS (including frequency output) ; ; This routine adds a programmable value to a 16-bit accumulator (a pair of ; two 8-bit registers) during each pass through the interrupt. It then ; copies the value from the high bit of the accumulator to the ; appropriate output port pin (LED, speaker, etc.) ; ; Input variable(s) : timer_low,timer_high,timer_accl,timer_acch ; freq_low,freq_high,freq_accl,freq_acch ; Output variable(s) : LED port pin, speaker port pin ; Variable(s) affected : timer_accl, timer_acch, freq_accl, freq_acch ; Flag(s) affected : none ; Size : 1 byte + 10 bytes (per timer) ; Timing (turbo) : 1 cycle + 10 cycles (per timer) ; bank timers ;switch to timer reg. bank :timer ; clc ;only needed if CARRYX=ON add timer_accl,timer_low ;adjust timer's accumulator addb timer_acch,c ; including carry bit add timer_acch,timer_high ; (timer = 16 bits long) movb led_pin,timer_acch.7 ;toggle LED (square wave) :frequency ; clc ;only needed if CARRYX=ON add freq_accl,freq_low ;adjust freq's accumulator addb freq_acch,c ; including carry bit add freq_acch,freq_high ; (freq = 16 bits long) movb spkr_pin,freq_acch.7 ;toggle speaker(square wave) ; ; ;***** Virtual Peripheral: Pulse Width Modulators ; ; These routines create an 8-bit programmable duty cycle output at the ; respective pwm port output pins whose duty cycle is directly proportional ; to the value in the corresponding pwm register. This value is added to an ; accumulator on each interrupt pass interrupt. When the addition causes a ; carry overflow, the ouput is set to the high part of its duty cycle. ; These routines are timing critical and must be placed before any ; variable-execution-rate code (like the UART, for example). ; ; Input variable(s) : pwm0,pwm0_acc,pwm1,pwm1_acc ; Output variable(s) : pwm port pins ; Variable(s) affected : port_buff, pwm0_acc, pwm1_acc ; Flag(s) affected : none ; Size : 2 bytes + 4 bytes (per pwm) ; + 2 bytes shared with adc code (see below) ; Timing (turbo) : 2 cycles + 4 cycles (per pwm) ; + 2 cycles shared with adc code (see below) ; bank analog ;switch to adc/pwm bank clr port_buff ;clear pwm/adc port buffer ; :pwm0 add pwm0_acc,pwm0 ;adjust pwm0 accumulator snc ;did it trigger? setb port_buff.0 ;yes, toggle pwm0 high :pwm1 add pwm1_acc,pwm1 ;adjust pwm1 accumulator snc ;did it trigger? setb port_buff.2 ;yes, toggle pwm1 high ; ;*** If the ADC routines are removed, the following instruction must be ;*** enabled (uncommented) for the PWM routine to function properly: ;:update_RC mov rc,port_buff ;update cap. discharge pins ; ; ;***** Virtual Peripheral: Bitstream Analog to Digital Converters ; ; These routines allow an 8-bit value to be calculated which corresponds ; directly (within noise variation limits) with the voltage (0-5V) present ; at the respective adc port input pins. These routines are timing critical ; and must be placed before any variable-execution-rate code (like the UART, ; for example). The currently enabled routine (version A) has been optimized ; for size and speed, and RAM register usage, however a fixed execution rate, ; yet slightly larger/slower routine (version B) is provided in commented ; (disabled) form to simplify building other timing-critical virtual ; peripheral combinations (i.e. that require fixed rate preceeding code). ; Note: if version B is selected, version A must be disabled (commented) ; ; Input variable(s) : adc0,adc0_acc,adc0_count,adc1,adc1_acc,adc1_count ; Output variable(s) : pwm port pins ; Variable(s) affected : port_buff, pwm0_acc, pwm1_acc ; Flag(s) affected : none ; Size (version A) : 9 bytes + 7 bytes (per pwm) ; + 2 bytes shared with adc code (see below) ; Size (version B) : 6 bytes + 10 bytes (per pwm) ; + 2 bytes shared with pwm code (see below) ; Timing (turbo) ; version A : 2 cycles shared with pwm code (see below) + ; (a) [>99% of time] 11 cycles + 4 cycles (per adc) ; (b) [<1% of time] 9 cycles + 7 cycles (per adc) ; version B : 6 cycles + 10 cycles (per adc) ; + 2 cycles shared with pwm code (see below) ; ;*** If the PWM routines are removed, the following 2 instructions must ;*** be enabled (uncommented) for the ADC routine to function properly: ; bank analog ;switch to adc/pwm bank ; clr port_buff ;clear pwm/adc port buffer :adcs mov w,>>rc ;get current status of adc's not w ;complement inputs to outputs and w,#%01010000 ;keep only adc0 & adc1 or port_buff,w ;store new value into buffer :update_RC mov rc,port_buff ;update cap. discharge pins ; ; VERSION A - smaller, quicker but with variable execution rate ; :adc0 sb port_buff.4 ;check if adc0 triggered? INCSZ adc0_acc ;if so, increment accumulator INC adc0_acc ; and prevent overflowing DEC adc0_acc ; by skipping second 'INC' :adc1 sb port_buff.6 ;check if adc1 triggered INCSZ adc1_acc ;if so, increment accumulator INC adc1_acc ; and prevent overflowing DEC adc1_acc ; by skipping second 'INC' INC adc0_count ;adjust adc0 timing count JNZ :done_adcs ;if not done, jump ahead :update_adc0 MOV adc0,adc0_acc ;samples ready, update adc0 :update_adc1 MOV adc1,adc1_acc ; update adc1 :clear_adc0 CLR adc0_acc ; reset adc0 accumulator :clear_adc1 CLR adc1_acc ; reset adc1 accumulator ; ; <end of version A> ; ; VERSION B - fixed execution rate ; ;*** The "adc1_count" register definition in the analog bank definition ;*** section must be enabled (uncommented) for this routine to work properly ; ;:adc0 sb port_buff.4 ;check if adc0 triggered ; INCSZ adc0_acc ;if so, increment accumulator ; INC adc0_acc ; and prevent overflowing ; DEC adc0_acc ; by skipping second 'INC' ; mov w,adc0_acc ;load W from accumulator ; inc adc0_count ;adjust adc0 timing count ; snz ;are we done taking reading? ; mov adc0,w ;if so, update adc0 ; snz ; ; clr adc0_acc ;if so, reset accumulator ; ;:adc1 sb port_buff.6 ;check if adc1 triggered ; INCSZ adc1_acc ;if so, increment accumulator ; INC adc1_acc ; and prevent overflowing ; DEC adc1_acc ; by skipping second 'INC' ; mov w,adc1_acc ;load W from accumulator ; inc adc1_count ;adjust adc1 timing count ; snz ;are we done taking reading? ; mov adc1,w ;if so, update adc1 ; snz ; ; clr adc1_acc ;if so, reset accumulator ; ; <end of version B> ; :done_adcs ; ;**** Virtual Peripheral: Universal Asynchronous Receiver Transmitter (UART) ; ; This routine sends and receives RS232C serial data, and is currently ; configured (though modifications can be made) for the popular ; "No parity-checking, 8 data bit, 1 stop bit" (N,8,1) data format. ; RECEIVING: The rx_flag is set high whenever a valid byte of data has been ; received and it the calling routine's responsibility to reset this flag ; once the incoming data has been collected. ; TRANSMITTING: The transmit routine requires the data to be inverted ; and loaded (tx_high+tx_low) register pair (with the inverted 8 data bits ; stored in tx_high and tx_low bit 7 set high to act as a start bit). Then ; the number of bits ready for transmission (10=1 start + 8 data + 1 stop) ; must be loaded into the tx_count register. As soon as this latter is done, ; the transmit routine immediately begins sending the data. ; This routine has a varying execution rate and therefore should always be ; placed after any timing-critical virtual peripherals such as timers, ; adcs, pwms, etc. ; Note: The transmit and receive routines are independent and either may be ; removed, if not needed, to reduce execution time and memory usage, ; as long as the initial "BANK serial" (common) instruction is kept. ; ; Input variable(s) : tx_low (only high bit used), tx_high, tx_count ; Output variable(s) : rx_flag, rx_byte ; Variable(s) affected : tx_divide, rx_divide, rx_count ; Flag(s) affected : rx_flag ; Size : Transmit - 15 bytes + 1 byte shared with receive code ; Receive - 20 bytes + 1 byte shared with transmit code ; Timing (turbo) : ; Transmit - (a) [not sending] 9 cycles ; (b) [sending] 19 cycles ; + 1 cycle shared with RX code ("bank" instr.) ; Receive - (a) [not receiving] 9 cycles ; (b) [start receiving] 16 cycles ; (c) [receiving, awaiting bit] 13 cycles ; (d) [receiving, bit ready] 17 cycles ; ; bank serial ;switch to serial register bank :transmit clrb tx_divide.baud_bit ;clear xmit timing count flag inc tx_divide ;only execute the transmit routine STZ ;set zero flag for test SNB tx_divide.baud_bit ; every 2^baud_bit interrupt test tx_count ;are we sending? JZ :receive ;if not, go to :receive clc ;yes, ready stop bit rr tx_high ; and shift to next bit rr tx_low ; dec tx_count ;decrement bit counter movb tx_pin,/tx_low.6 ;output next bit ; :receive movb c,rx_pin ;get current rx bit test rx_count ;currently receiving byte? jnz :rxbit ;if so, jump ahead mov w,#9 ;in case start, ready 9 bits sc ;skip ahead if not start bit mov rx_count,w ;it is, so renew bit count mov rx_divide,#start_delay ;ready 1.5 bit periods :rxbit djnz rx_divide,:rxdone ;middle of next bit? setb rx_divide.baud_bit ;yes, ready 1 bit period dec rx_count ;last bit? sz ;if not rr rx_byte ; then save bit snz ;if so setb rx_flag ; then set flag :rxdone ; ;****** Virtual Peripheral: Time Clock ; ; This routine maintains a real-time clock count (in msec) and allows processing ; of routines which only need to be run once every millisecond. ; ; Input variable(s) : time_base_lo,time_base_hi,msec_lo,msec_hi ; Output variable(s) : msec_lo,msec_hi ; Variable(s) affected : time_base_lo,time_base_hi,msec_lo,msec_hi ; Flag(s) affected : ; Size : 18 bytes ; Timing (turbo) : [99.9% of time] 15 cycles ; [0.1% of time] 18 cycles ; BANK clock ;select clock register bank MOV W,#int_period ;load period between interrupts ADD time_base_lo,W ;add it to time base SNC ;skip ahead if no underflow INC time_base_hi ;yes overflow, adjust high byte MOV W,#tick_hi ;check for 1 msec click MOV W,time_base_hi-W ;Is high byte above or equal? MOV W,#tick_lo ;load instr. count low byte SNZ ;If hi byte equal, skip ahead MOV W,time_base_lo-W ;check low byte vs. time base SC ;skip ahead if low JMP done_int ;If not, end interrupt :got_tick CLR time_base_hi ;Yes, adjust time_base reg.'s SUB time_base_lo,#tick_lo ; leaving time remainder INCSZ msec_lo ;And adjust msec count DEC msec_hi ; making sure to adjust high INC msec_hi ; byte as necessary :done_clock ;this next line is needed only to allow flashing the pb0 & pb1 LEDs MOV !RB,#00001111b ;set up pb's as inputs ;****** Virtual Peripheral: Path Switch ; ; This routine allows alternating execution of multiple modules which don't ; need to be run during every interrupt pass in order to reduce the overall ; execution time of the interrupt on any given pass (i.e. it helps the code ; run faster). ; This version runs with the software clock virtual peripheral msec_lo variable ; allowing altenation between the switch positions once each millisecond. ; ; Input variable(s) : msec_lo ; Output variable(s) : ; Variable(s) affected : ; Flag(s) affected : ; Size : 3 bytes + 1 bytes per jump location ; Timing (turbo) : 8 cycles ; :path_switch MOV W,msec_lo ;load switch selector byte AND W,#00000011b ;keep low 2 bits - 4 position JMP PC+W ;jump to switch position pointer :pos0 JMP pb0 ;pushbutton 0 checking routine :pos1 JMP pb1 ;pushbutton 1 checking routine :pos2 JMP pb2 ;pushbutton 2 checking routine :pos3 JMP pb3 ;pushbutton 3 checking routine ; ; ;***************************** PROGRAM DATA ******************************** ; ; String data for user interface (must be in lower half of memory page 0) ; _hello dw 13,10,13,10,'SX Virtual Peripheral Demo 2.0' _cr DW 13,10,0 _prompt dw 13,10,'>',0 _error dw 'Error!',13,10,0 _hex dw '0123456789ABCDEF' _space DW ' ',0 _sample DW 13,10,'Sample=',0 _view DW 13,10,'Bytes stored:',0 _pressed DW 13,10,'Pressed: button ',0 ; ; ;****** Virtual Peripheral: Push Buttons* ; ; This routine monitors any number of pushbuttons, debounces them properly ; as needed, and flags the main program code as valid presses are received. ; *Note: this routine requires the Time Clock virtual peripheral or similar ; pre-processing timer routine. ; ; Input variable(s) : pb0_down,pb1_down,debounce0,debounce1 ; pb2_down,pb3_down,debounce2,debounce3 ; Output variable(s) : pb0_pressed, pb1_pressed, pb2_pressed, pb3_pressed ; Variable(s) affected : debounce0, debounce1, debounce2, debounce3 ; Flag(s) affected : pb0_down,pb1_down,pb0_pressed,pb1_pressed ; pb2_down,pb3_down,pb2_pressed,pb3_pressed ; Size : 12 bytes per pushbutton + actions (see below**) ; + 1 byte if path switch not used ; Timing (turbo) : 7,10, or 12 cycles/pushbutton (unless path switch used) ; + actions (see below**) ; pb0 ; BANK buttons ;select bank (if not done elsewhere) JB button0,:pb0_up ;button0 pressed? JB pb0_down,:done_pb0 ;yes, but is it new press? INC debounce0 ; and adjust debounce count JNB debounce0.hold_bit,:done_pb0 ;wait till long enough SETB pb0_down ;yes, flag that button is down ;**If the button activity is short (a few bytes), it can fit here, though be ; careful that longest possible interrupt doesn't exceed int_period # of cycles. ; ; <short code segment can go here> ; ;**Otherwise, use this flag to process button press in main code (and don't ; forget to reset the flag once the button activity is complete). SETB pb0_pressed ; and set pb0 action flag SKIP ;skip next instruction :pb0_up CLRB pb0_down ;button up, clear flag CLR debounce0 ; and clear debounce count :done_pb0 ; JMP done_int ;this needed only if path switch used pb1 ; BANK buttons ;do bank select (if not done elsewhere) JB button1,:pb1_up ;button1 pressed? JB pb1_down,:done_pb1 ;yes, but is it new press? INC debounce1 ; and adjust debounce count JNB debounce1.hold_bit,:done_pb1 ;wait till long enough SETB pb1_down ;yes, flag that button is down ;**If the button activity is short (a few bytes), it can fit here, though be ; careful that longest possible interrupt doesn't exceed int_period # of cycles. ; ; <short code segment can go here> ; ;**Otherwise, use this flag to process button press in main code (and don't ; forget to reset the flag once the button activity is complete). SETB pb1_pressed ; and set pb1 action flag SKIP ;skip next instruction :pb1_up CLRB pb1_down ;button up, clear flag CLR debounce1 ; and clear debounce count :done_pb1 ; JMP done_int ;this needed only if path switch used pb2 ; BANK buttons ;do bank select (if not done elsewhere) JB button2,:pb2_up ;button2 pressed? JB pb2_down,:done_pb2 ;yes, but is it new press? INC debounce2 ; and adjust debounce count JNB debounce2.hold_bit,:done_pb2 ;wait till long enough SETB pb2_down ;yes, flag that button is down ;**If the button activity is short (a few bytes), it can fit here, though be ; careful that longest possible interrupt doesn't exceed int_period # of cycles. ; ;**Otherwise, use this flag to process button press in main code (and don't ; orget to reset the flag once the button activity is complete). SETB pb2_pressed ; and set pb2 action flag SKIP ;skip next instruction :pb2_up CLRB pb2_down ;button up, clear flag CLR debounce2 ; and clear debounce count :done_pb2 ; JMP done_int ;this needed only if path switch used pb3 ; BANK buttons ;do bank select (if not done elsewhere) JB button3,:pb3_up ;button3 pressed? JB pb3_down,:done_pb3 ;yes, but is it new press? INC debounce3 ; and adjust debounce count JNB debounce3.hold_bit,:done_pb3 ;wait till long enough SETB pb3_down ;yes, flag that button is down ;**If the button activity is short (a few bytes), it can fit here, though be ; careful that longest possible interrupt doesn't exceed int_period # of cycles. ; ;**Otherwise, use this flag to process button press in main code (and don't ; forget to reset the flag once the button activity is complete). SETB pb3_pressed ; and set pb3 action flag SKIP ;skip next instruction :pb3_up CLRB pb3_down ;button up, clear flag CLR debounce3 ; and clear debounce count :done_pb3 ; ;***these next 7 lines are needed only to allow flashing the pb0 & pb1 LEDs MOV !RB,#00001100b ;return pb's to LED outputs SETB button0 ;flash pb0 LED SB msec_hi.1 ; roughly once/sec CLRB button0 ; CLRB button1 ; alternating with pb1 LED SB msec_hi.1 ; SETB button1 ; done_int ;interrupt routines complete ; ; Maximum interrupt length = 21 (timers:2) + 12 (PWMs:2) + 23 (ADCs:2) + 37 (UART) ; + 18 (clock) + 8 (switch) + (12) (PBs) + 10 (leds) ; + 4 (next two instr.) + 6 (RTCC interrupt processing) ; = 163 cycles (must be =< int_period) mov w,#-int_period ;interrupt every 'int_period' clocks retiw ;exit interrupt ; ;****** End of interrupt sequence ; ;************************** RESET ENTRY POINT ***************************** ; reset_entry PAGE start ;Set page bits and then JMP start ; jump to start of code ;***************************** SUBROUTINES ********************************* ; ; Note: These subroutines must appear in the lower 256 bytes of any given ; memory page. Here, page 1 (=200h) is used. Remember to set page bits ; when accessing them from other than page 2 of program memory. ORG 200h ; ; ; Subroutine - Get byte via serial port ; get_byte ;the following code watches pb0-pb3 for presses and acts on them BANK buttons ;select clock/pb bank MOV W,pbflags ;load pushbutton flags BANK serial ;re-select serial bank AND W,#00001111b ;keep only 'pressed' flags JZ :no_press ;jump ahead if not pressed MOV temp,W ;store flags temporarily MOV W,#_pressed ;point to "pressed" string CALL send_string ;send it out via UART CLR string ;clear 2nd temp storage reg. :which_pb INC string ;increment 2nd temp value RR temp ;check which button SC ;skip ahead if not this one JMP :which_pb ;keep looping MOV W,--string ;get 2nd temp value (less 1) MOV temp,W ;save it in temp MOV W,#'0' ;get the '0' character ADD W,temp ;and adjust it as needed CALL send_byte ;and send it out via UART BANK buttons ;select button bank MOV W,#11110000b ;get clear mask for pbflags AND pbflags,W ;clear all "pressed" flags MOV W,temp ;get which button pressed JMP PC+W ;Go do PB routines :pb0 JMP pb0_action ;do pb0 action :pb1 JMP pb1_action ;do pb1 action :pb2 JMP pb2_action ;do pb2 action :pb3 JMP pb3_action ;do pb3 action :no_press jnb rx_flag,get_byte ;wait till byte is received clrb rx_flag ;reset the receive flag mov byte,rx_byte ;store byte (copy using W) ; & fall through to echo char back ; ; Subroutine - Send byte via serial port ; send_byte bank serial :wait test tx_count ;wait for not busy jnz :wait ; not w ;ready bits (inverse logic) mov tx_high,w ; store data byte setb tx_low.7 ; set up start bit mov tx_count,#10 ;1 start + 8 data + 1 stop bit RETP ;leave and fix page bits ; ; Subroutine - Send hex byte (2 digits) ; send_hex mov w,#_cr ;get <cr> with <lf> call send_string ; and send it :num_only mov w,<>number_low ;get first digit call :digit ; and send it mov w,number_low ;load 2nd digit :digit and w,#$F ;read hex chr mov temp,w ; and store it temporarily mov w,#_hex ;load hex table address ; clc ;only needed if CARRYX used add w,temp ;calculate hex table offset mov m,#0 ; and go get the appropriate iread ; character with indirect mov m,#$F ; addressing using MODE reg. jmp send_byte ;go send hex character ; ; ; Subroutine - Send string pointed to by address in W register ; send_string mov string,w ;store string address :loop mov w,string ;read next string character mov m,#0 ; with indirect addressing iread ; using the mode register mov m,#$F ;reset the mode register test w ;are we at the last char? snz ;if not=0, skip ahead RETP ;yes, leave & fix page bits call send_byte ;not 0, so send character inc string ;point to next character jmp :loop ;loop until done ; ; ; Subroutine - Make byte uppercase ; uppercase csae byte,#'a' ;if byte is lowercase, then skip ahead ret sub byte,#'a'-'A' ;change byte to uppercase RETP ;leave and fix page bits ; ; Subroutine - Convert hex number from ascii ; get_hex clr number_low ;reset number clr number_high CLRB got_hex ;reset hex value flag :loop call get_byte ;get digit cje byte,#' ',:loop ;ignore spaces mov w,<>byte ;get nibble-swapped byte mov hex,w ; into hex register cjb byte,#'0',:done ;if below '0', done cjbe byte,#'9',:got ;if '0'-'9', got hex digit call uppercase ;make byte uppercase cjb byte,#'A',:done ;if below 'A', done cja byte,#'F',:done ;if above 'F', done add hex,#$90 ;'A'-'F', adjust hex digit :got mov temp,#4 ;shift digit into number :shift rl hex ; by rotating rl number_low ; all three registers rl number_high ; left 4 times djnz temp,:shift ; SETB got_hex ;flag that we got a value jmp :loop ;go get next digit :cr call get_byte ;get a byte via serial port :done cjne byte,#13,:cr ;loop until it's a <cr> RETP ;leave and fix page bits ; ; ;******************************** I2C Subroutines ***************************** ; ; These routines write/read data to/from the 24LCxx EEPROM at a rate of approx. ; 200kHz. For faster* reads (up to 400 kHz max), read, write, start amd stop ; bit cycles and time between each bus access must be individually tailored ; using the CALL Bus_delay:custom entry point with appropriate values in the W ; register - in turbo mode: delay[usec] = 1/xtal[MHz] * (6 + 4 * (W-1)). ; Acknowledge polling is used to reduce delays between successive operations ; where the first of the two is a write operation. In this case, the speed ; is limited by the EEPROM's storage time. ; ; ;****** Subroutine(s) : Write to I2C EEPROM ; These routines write a byte to the 24LCxxB EEPROM. Before calling this ; subroutine, the address and data registers should be loaded accordingly. The ; sequential mode flag should be clear for normal byte writing operation. ; To write in sequential/page mode, please see application note. ; ; Input variable(s) : data, address, seq_flag ; Output variable(s) : none ; Variable(s) affected : byte, temp, count, delay ; Flag(s) affected : none ; Timing (turbo) : approx. 200 Kbps write rate ; : approx. 10 msec between successive writes ; I2C_write CALL Set_address ;write address to slave :page_mode MOV W,data ;get byte to be sent CALL Write_byte ;Send data byte JB seq_flag,:done ;is this a page write? CALL Send_stop ;no, signal stop condition :done RETP ;leave and fix page bits ; Set_address CALL Send_start ;send start bit MOV W,#control_w ;get write control byte CALL Write_byte ;Write it & use ack polling JNB got_ack,Set_address ; until EEPROM ready MOV W,address ;get EEPROM address pointer CALL Write_byte ; and send it RETP ;leave and fix page bits ; Write_byte MOV byte,W ;store byte to send MOV count,#8 ;set up to write 8 bits :next_bit CALL Write_bit ;write next bit RL byte ;shift over to next bit DJNZ count,:next_bit ;whole byte written yet? CALL Read_bit ;yes, get acknowledge bit SETB got_ack ;assume we got it SNB in_bit ;did we get ack (low=yes)? CLRB got_ack ;if not, flag it ; ; to use the LED as a 'no_ack' signal, the ':toggle_led' line in the interrupt ; section must be commented out, and the next 3 instructions uncommented. ; CLRB led_pin ;default: LED off ; SNB in_bit ;did we get ack (low=yes)? ; SETB led_pin ; if not, flag it with LED ; RETP ;leave and fix page bits ; Write_bit MOVB sda,out_bit ;put tx bit on data line MOV !ra,#portsetup_w ;set Port A up to write JMP :delay1 ;100ns data setup delay :delay1 JMP :delay2 ; (note: 250ns at low power) :delay2 SETB scl ;flip I2C clock to high ; MOV W,#t_high ;get write cycle timing* CALL Bus_delay ;do delay while bus settles CLRB scl ;return I2C clock low MOV !ra,#portsetup_r ;set sda->input in case ack ; MOV W,#t_low ;get clock=low cycle timing* CALL Bus_delay ;allow for clock=low cycle RETP ;leave and fix page bits ; Send_start SETB sda ;pull data line high MOV !ra,#portsetup_w ;setup I2C to write bit JMP :delay1 ;100ns data setup delay :delay1 JMP :delay2 ; (note: 250ns at low power) :delay2 SETB scl ;pull I2C clock high ; MOV W,#t_su_sta ;get setup cycle timing* CALL Bus_delay ;allow start setup time :new CLRB sda ;data line goes high->low ; MOV W,#t_hd_sta ;get start hold cycle timing* CALL Bus_delay ;allow start hold time CLRB scl ;pull I2C clock low ; MOV W,#t_buf ;get bus=free cycle timing* CALL Bus_delay ;pause before next function RETP ;leave and fix page bits ; Send_stop CLRB sda ;pull data line low MOV !ra,#portsetup_w ;setup I2C to write bit JMP :delay1 ;100ns data setup delay :delay1 JMP :delay2 ; (note: 250ns at low power) :delay2 SETB scl ;pull I2C clock high ; MOV W,#t_su_sto ;get setup cycle timing* CALL Bus_delay ;allow stop setup time SETB sda ;data line goes low->high ; MOV W,#t_low ;get stop cycle timing* CALL Bus_delay ;allow start/stop hold time RETP ;leave and fix page bits ; Bus_delay MOV W,#t_all ;get timing for delay loop :custom MOV temp,W ;save it :loop DJNZ temp,:loop ;do delay RETP ;leave and fix page bits ; ;****** Subroutine(s) : Read from I2C EEPROM ; These routines read a byte from a 24LCXXB E2PROM either from a new address ; (random access mode), from the current address in the EEPROM's internal ; address pointer (CALL Read_byte:current), or as a sequential read. In either ; the random access or current address mode, seq_flag should be clear. Please ; refer to the application note on how to access the sequential read mode. ; ; Input variable(s) : address, seq_flag ; Output variable(s) : data ; Variable(s) affected : byte, temp, count, delay ; Flag(s) affected : none ; Timing (turbo) : reads at approx. 200Kbps ; I2C_read CALL Set_address ;write address to slave :current CALL Send_start ;signal start of read MOV W,#control_r ; get read control byte CALL Write_byte ; and send it :sequential MOV count,#8 ;set up for 8 bits CLR byte ;zero result holder :next_bit RL byte ;shift result for next bit CALL Read_bit ;get next bit DJNZ count,:next_bit ;got whole byte yet? MOV data,byte ;yes, store what was read SB seq_flag ;is this a sequential read? :non_seq JMP Send_stop ; no, signal stop & exit CLRB out_bit ; yes, setup acknowledge bit CALL Write_bit ; and send it RETP ;leave and fix page bits ; Read_bit CLRB in_bit ;assume input bit low MOV !ra,#portsetup_r ;set Port A up to read SETB scl ;flip I2C clock to high ; MOV W,#t_high ;get read cycle timing* CALL Bus_delay ;Go do delay SNB sda ;is data line high? SETB in_bit ;yes, switch input bit high CLRB scl ;return I2C clock low ; MOV W,#t_buf ;get bus=free cycle timing* CALL Bus_delay ;Go do delay RETP ;leave and fix page bits ; ; Take_sample BANK analog ;switch to analog bank MOV W,ADC1 ;get ADC1 value BANK I2C ;switch to EEPROM bank SNB got_hex ;did user enter a value? MOV W,number_low ;yes, load it instead MOV data,W ;save ADC1 value CALL I2C_Write ;store it in EEPROM INC address ;move to next address INC byte_count ;adjust # bytes stored MOV W,eeprom_size ;get memory size MOV W,address-W ;are we past end? SNZ ;if not, skip ahead CLR address ;if so, reset it :done RETP ;leave and fix page bits ; Erase_Mem CLR address ;restore address pointer SETB erasing ;flag erase operation MOV num_bytes,#eeprom_size ;wipe whole mem :wipeloop CLR data ;byte to wipe with=0 ; MOV data,address ;byte to wipe with=addr CALL I2C_write ;wipe EEPROM byte INC address ;move to next address DJNZ num_bytes,:wipeloop ;Erased enough yet? CLR byte_count ;done, reset stored count CLR save_addr ;reset backup address MOV W,#eeprom_size ;load mem size into W CALL View_mem:all ; and view cleared memory CLRB erasing ;flag operation done RETP ;leave and fix page bits ; View_Mem MOV W,byte_count ;get # bytes stored :all MOV num_bytes,W ;store it into view count MOV W,#_view ;get view message CALL send_string ;dump it BANK I2C ;switch to EEPROM bank MOV number_low,byte_count ;get byte storage count CALL send_hex:num_only ;dump it BANK I2C ;switch to I2C bank MOV W,#0 ;Address = start of EEPROM JMP :address ;Go store address :single MOV num_bytes,#1 ;only a single byte MOV W,number_low ;get the address pointer :address MOV address,W ;store requested address MOV W,#_cr ;get carriage return :dump CALL send_string ;send it BANK I2C ;Switch to I2C bank SB erasing ;viewing after erase cycle SNB got_hex ; or special hex value? JMP :viewloop ;yes, go dump it TEST save_addr ;no, is EEPROM empty? SNZ ;if not, skip ahead JMP :done ;yes, so leave :viewloop CALL I2C_read ;fetch byte from EEPROM MOV number_low,data ;setup to send it CALL send_hex:num_only ;transmit it (RS232) BANK I2C ;switch to I2C bank DEC num_bytes ;decrement byte count SNZ ;skip ahead if not done JMP :done ;all bytes dumped, exit INC address ;move to next address MOV W,#00001111b ;keep low nibble AND W,address ; of address pointer MOV W,#_space ;default=send a space SNZ ;have we done 16 bytes? MOV W,#_cr ;yes, point to a <cr> JMP :dump ;go dump it and continue :done MOV address,save_addr ;restore address pointer RETP ;leave and fix page bits ; ;************************** End of I2C Subroutines **************************** ; ;******** ;* Main * ;******** ; start mov ra,#%1011 ;initialize port RA mov !ra,#%0100 ;Set RA in/out directions mov rb,#%10000000 ;initialize port RB mov !rb,#%00001111 ;Set RB in/out directions clr rc ;initialize port RC mov !rc,#%10101010 ;Set RC in/out directions mov m,#$D ;set input levels mov !rc,#0 ; to cmos on port C mov m,#$F ;reset mode register CLR FSR ;reset all ram starting at 08h :zero_ram SB FSR.4 ;are we on low half of bank? SETB FSR.3 ;If so, don't touch regs 0-7 CLR IND ;clear using indirect addressing IJNZ FSR,:zero_ram ;repeat until done bank timers ;set defaults setb timer_low.0 ;LED off setb freq_low.0 ;speaker off mov !option,#%10011111 ;enable rtcc interrupt ; ; Terminal - main loop ; terminal mov w,#_hello ;send hello string call send_string :loop mov w,#_prompt ;send prompt string call send_string call get_byte ;get command via UART call uppercase ; make it uppercase mov cmd,byte ; and store it call get_hex ; get hex number (if present) :check_cmds ;note: below, xx=hex value cje cmd,#'T',:timer ;T xxxx cje cmd,#'F',:freq ;F xxxx cje cmd,#'A',:pwm0 ;A xx cje cmd,#'B',:pwm1 ;B xx cje cmd,#'C',:adc0 ;C cje cmd,#'D',:adc1 ;D ; Command: S [xx] - Store sample (if xx is left out, ADC1 is sampled) ; - if xx is left out, adc1 value is stored ; cje cmd,#'S',:sample ;S [xx] =store sample ; ; Command: V [xx] - View stored byte(s) ; - if xx is left out, all stored byted are shown ; - if xx=ff then whole eeprom is dumped ; cje cmd,#'V',:view ;V [xx] =View EEPROM contents ; ; Command: E - Erase EEPROM contents and reset storage pointer ; cje cmd,#'E',:erase ;E = Erase whole EEPROM mov w,#_error ;bad command call send_string ;send error string jmp :loop ;try again :timer bank timers ;timer write mov timer_low,number_low ;store new timer value mov timer_high,number_high ; (16 bits) jmp :loop :freq bank timers ;freq write mov freq_low,number_low ;store new frequency value mov freq_high,number_high ; (16 bits) jmp :loop :pwm0 bank analog ;pwm0 write mov pwm0,number_low ;store new pwm0 value jmp :loop :pwm1 bank analog ;pwm1 write mov pwm1,number_low ;store new pwm0 value jmp :loop :adc0 bank analog ;adc0 read mov number_low,adc0 ;get current adc0 value call send_hex ;transmit it (via UART) jmp :loop :adc1 bank analog ;adc1 read mov number_low,adc1 ;get current adc1 value call send_hex ; transmit it (via UART) jmp :loop :sample BANK I2C ;Switch to I2C bank CALL Take_sample ;Go take a sample MOV W,#_sample ;get sample message CALL send_string ;dump it BANK I2C ;switch to EEPROM bank MOV number_low,data ;byte sent CALL send_hex:num_only ;dump it JMP :loop ;back to main loop ; :view BANK I2C ;switch to I2C bank MOV save_addr,address ;backup address pointer SNB got_hex ;Was this "V xx" command? JMP :v_special ;if so, jump CALL View_mem ;no, view all stored data JMP :loop ;back to main loop :v_special MOV W,++number_low ;View whole mem=> "V ff" JZ :v_whole ;Was this requested? CALL View_mem:single ;yes, go dump it JMP :loop ;back to main loop :v_whole MOV W,#eeprom_size ;Get eeprom mem size CALL View_mem:all ;Go dump the whole thing JMP :loop ;back to main loop ; :erase BANK I2C ;switch to I2C bank CALL Erase_mem ;no, wipe whole EEPROM JMP :loop ;back to main loop ;*************** pb0_action BANK timers ;select timers bank INC timer_low ;increase LED flash rate INC freq_low ;increase frequency BANK clock ;re-select clock bank JMP terminal:loop ; pb1_action BANK timers ;select timers bank DEC timer_low ;reduce LED flash rate DEC freq_low ;reduce frequency BANK clock ;re-select clock bank JMP terminal:loop ; pb2_action ; ; <button 2 action goes here> ; JMP terminal:loop ; pb3_action ; ; <button 3 action goes here> ; JMP terminal:loop ; ;*************** END ;End of program code
file: /Techref/scenix/8vp.src, 53KB, , updated: 2003/6/9 22:07, local time: 2024/10/8 14:01,
44.220.251.236:LOG IN ©2024 PLEASE DON'T RIP! THIS SITE CLOSES OCT 28, 2024 SO LONG AND THANKS FOR ALL THE FISH!
|
©2024 These pages are served without commercial sponsorship. (No popup ads, etc...).Bandwidth abuse increases hosting cost forcing sponsorship or shutdown. This server aggressively defends against automated copying for any reason including offline viewing, duplication, etc... Please respect this requirement and DO NOT RIP THIS SITE. Questions? <A HREF="http://techref.massmind.org/techref/scenix/8vp.src"> scenix 8vp</A> |
Did you find what you needed? |
Welcome to massmind.org! |
Welcome to techref.massmind.org! |
.