
© 2000 Ubicom, Inc. All rights reserved. - 1 -

UbicomTM and the Ubicom logo are trademarks of Ubicom semiconductor, Inc.
Application Note 13
November 2000
SX Arithmetic Routines
1.0 Introduction
This application note presents programming techniques
for performing commonly found arithmetic operations,
such as multi-byte binary addition and subtraction, multi-
digit BCD addition and subtraction, multiplication and
division.

2.0 Binary Addition and Subtraction
The default configuration of SX device is to ignore the
carry flag in addition and subtraction operations even the
results of those operations do affect that flag. For multi-
byte arithmetic operations, it is often desirable for the
result of lower bytes to propagate to higher bytes by
means of the carry flag.

To enable the effect of the carry flag, carryx must be
included in the list of device directives which are speci-
fied before the instructions, to make the carry flag an
input to ADD, and SUB instructions.

The carry flag should be set to zero first before any addi-
tion.

The SUB instruction will set the carry flag to zero if there
is an underflow. Therefore, it is necessary for us to set it
to one before any subtraction is performed.

The following program segment illustrates 32 bit binary
addition. The 4-byte operand1 and the 4-byte operand2
are added together. The result is put back into operand2.

Note that operand1 is located at locations 8, 9, a, b,
hence 10xx binary and operand2 is at locations c, d, e, f
or 11xx binary. Therefore toggling bit 2 of the FSR regis-
ter effectively enable us to switch back and forth among
the two operands. With that in mind, the indirect address-
ing of SX helps in saving code by just using IND as the
register pointed to by FSR.

This routine assumes that the two operands are adjacent
to one another and operand1 starts at the 08 location. To
relocate the operands to other locations, make sure that
they are still adjacent to one another, thus occupying a
contiguous 8 bytes, and that operand1 is aligned to x0 or
x8. The only change needed in the code will be the end-
ing condition. Note that in the example, we tested bit 4
which will be toggled after the inc. fsr instruction if FSR
was $f, and therefore pointing to the last byte. To make
the routine work with operands located in $10-$17, for
example, would need the ending condition be changed
from sb fsr.4 to sb fsr.3 since the inc fsr instruction will
change the address of last byte from $17 to $18
(%00011000) and set bit 3. Using this technique, we can
save the need to store the count separately in order to
keep track of the number of bytes added.

;32 bit addition

;entry = 32 bit operand1 and 32 bit operand2 in binary form

;exit = operand2 become operand1 + operand2, carry flag=1 for overflow from MSB

add32 clc ; clear carry, prepare for addition

 mov fsr,#operand1 ; points to operand 1 first

add_more clrb fsr.2 ; toggle back to operand 1

mov W,ind ; get contents into the work register

setb fsr.2 ; points to operand 2

add ind,W ; operand2=operand2+operand1

inc fsr ; next byte

sb fsr.4 ; done? (fsr=$10?)

jmp add_more ; not yet

ret ; done, return to calling routine
www.ubicom.com

SX Arithmetic Routines AN13
The 32 bit subtraction routine is very similar to addition,
except that we set the carry flag first to indicate no under-
flow. Note that the result is in operand2 and it is
operand2-operand1, not the other way around. When the

carry flag is 0 on return, it means that the result is nega-
tive and is therefore in 2’s complement form.

;32 bit subtraction

;entry = 32 bit operand1 and 32 bit operand2 in binary form

;exit = operand2 become operand2-operand1, carry flag=0 for underflow from MSB

sub32 stc ; set carry, prepare for subtraction

mov fsr,#operand1 ; points to operand 1 first

sub_more clrb fsr.2 ; toggle back to operand 1

mov W,ind ; get contents into the work register

setb fsr.2 ; points to operand 2

sub ind,W ; operand2=operand2-operand1

inc fsr ; next byte

sb fsr.4 ; done? (fsr=$10?)

jmp sub_more ; not yet

ret ; done, return to calling routine

3.0 BCD Addition and Subtraction
In applications where calculation result needs to be dis-
played, BCD or binary coded decimal can be much more
easily converted into visual form, as in the case of adding
machine or calculator.

The algorithm here for BCD addition is very similar to
binary addition except for 1 important difference: decimal
adjustment or correction. The need for such operation
will be evident as we examine the follow simple addition:

85+15 = 9A

Obviously the correction result should be 100 in BCD.
We can see that by adding 6 to the least significant digit
(LSD), in this case, $9A+6=$A0, will correct the LSD.
Finally, by adding a $60 to the whole number (equal to
adding 6 to the most significant digit, MSD), the entire
number is corrected to $00 with a carry of 1, which can
be propagated into the next byte.

By looking at another example: 19+19=32. After the addi-
tion, the digit carry will be set to one, indicating an over-
flow in the LSD. The result then can be corrected by
adding 6 to the LSD, giving us the correct answer of 38.

In general, we will do a correction on LSD of the result if
the digit carry is set or the LSD is greater than 9. The
same is true for the MSD. It will be corrected, i.e., added
with 6, when the carry bit is set or the MSD is greater
than 9.

The tricky part now is how to check if the digit is greater
than 9. A straight implementation will require masking 1
nibble off at a time and do a subtraction. This will require
additional storage if we do not want the operands (and
the result) to be changed. The way it is implemented here
is a bitwise comparison.

Let us look at a 4 bit number, if bit number 3 is 0, the
number must be then%0xxx, and therefore ranges from
0-7, hence less than 9. If that’s not the case, then we go
on to check bit 2. If it is a one, then we have%11xx, and
the number is definitely bigger than 9, since the minimum
is already%1100 or 12. If bit 2 is a zero, we proceed to
check bit 1. If this bit is a zero, then we have%100x,
which means the number is either 8 or 9, and no correc-
tion is needed. But if bit 1 is an one, then we have
%101x, which is higher than 9 and correction will be
needed.

This method of detecting whether the digit is greater than
9 or not, is used twice in the code. Once for LSD and
once for MSD. The changes is only the bit number that is
being checked on.

One more point worth noting is the carry bit. After the ini-
tial binary addition, we have to store the carry bit that is
used to propagate the result to higher bytes. The reason
for doing this is simple: the decimal correction process of
adding 6 to the number will clear the carry bit.

Notice also that the ending condition has been changed
to sb fsr.2 instead of sb fsr.4. This is simply because the
code happens to point at operand 1 at that time and it just
saves us code to check if fsr is pointing to the last byte of
operand 1 at location $0b (%1011) or not. The fsr will be
$0c (%1100) after the increment operation and therefore
setting bit 2.
© 2000 Ubicom, Inc. All rights reserved. - 2 - www.ubicom.com

AN13 SX Arithmetic Routines
;8 BCD digit addition

;entry = 8 BCD digit operand1 and 8 BCD digit operand2 in BCD form

;exit = operand2 become operand2+operand1, carry flag=1 for overflow from MSB

; operand1 will be DESTROYED

badd32 clc ; clear carry, prepare for addition

mov fsr,#operand1 ; points to operand 1 first

badd_more

mov W,ind ; get contents into the working register

clr ind

setb fsr.2 ; points to operand 2

add ind,W ; operand2=operand2+operand1

clrb fsr.2

rl ind ; store carry bit which will be altered by decimal

; adjustment (adding 6)

setb fsr.2 ; points back to operand 2

snb status.1 ; digit carry set? if so, need decimal correction

jmp dcor

jnb ind.3,ck_overflow ; if 0xxx, check MSD

jb ind.2,dcor ; if 11xx, it's >9, thus need correction

jnb ind.1,ck_overflow ; 100x, number is 8 or 9, no decimal correction

; here if 101x, decimal adjust

dcor clc ; clear effect of previous carry

add ind,#6 ; decimal correction by adding 6

; finish dealing with least significant digit, proceed to MSD

ck_overflow clrb fsr.2 ; points to operand1

jb ind.0,dcor_msd ; stored carry=1, decimal correct

; test if MSD > 9

setb fsr.2 ; points back to operand2

jnb ind.7,next_badd ; if 0xxx, it's <9, add next byte

jb ind.6,dcor_msd ; if 11xx, it's >9, thus need correction

jnb ind.5,next_badd ; if 100x, it's <9

;here if 101x, decimal adjust

dcor_msd clc ; clear effect of carry

setb fsr.2 ; make sure that it's pointing at the result

add ind,#$60 ; decimal correct

next_badd clrb fsr.2 ; points to stored carry

snb ind.0 ; skip if not set

stc ; restore stored carry

inc fsr ; next byte

sb fsr.2 ; done? (fsr=$0c?)

jmp badd_more ; not yet

ret ; done, return to calling routine
© 2000 Ubicom, Inc. All rights reserved. - 3 - www.ubicom.com

SX Arithmetic Routines AN13
BCD subtraction is very similar to addition except for a
few notes, which are summarized below:

• Carry flag is set first before subtraction which means no
borrow;

• Decimal correction is done when:
– digit carry is 0;
– least significant digit (LSD) is greater than 9;
– carry is 0;
– most significant digit (MSD) is greater than 9;

• when the result is negative, it is not suitable for display,
e.g., on 7 segment LEDs. Therefore, an operation
which negates the number is performed by 0-result.
This will enable us to obtain the magnitude of the num-
ber. The no carry condition will keep us reminded of the
fact that it is a negative number. This situation is also
occurring in a binary subtraction, whereas a no carry
condition means the result is in 2’s complement form.
This is fine since the 2’s complement is not used for
display and it is useful for further computation.

;8 BCD digit subtraction
;entry = 8 BCD digit operand1 and 8 BCD digit operand2 in BCD form

;exit = operand2 become operand2-operand1, carry flag=0 for underflow from MSB

; carry flag=1 for positive result

; operand1 will be DESTROYED

bsub32 call bs32 ; do subtraction

snc ; no carry=underflow?

jmp bs_done ; carry=1 positive, done

call neg_result ; yes, get the magnitude, 0-result

call bs32 ; keep in mind that this result is a negative

; number (carry=0)

bs_done ret

bs32 stc ; set carry, prepare for subtraction

mov fsr,#operand1 ; points to operand 1 first

bsub_more

mov W,ind ; get contents into the working register

clr ind

setb ind.7 ; set to 1 so that carry=1 after rl instruction

setb fsr.2 ; points to operand 2

sub ind,w ; operand2=operand2+operand1

clrb fsr.2

rl ind ; store carry bit which will be altered by decimal

; adjustment (adding 6)

setb fsr.2 ; points back to operand 2

sb status.1 ; digit carry set? if so, need decimal correction

jmp dec_cor

jnb ind.3,ck_underflow ; if 0xxx, check MSD

jb ind.2,dec_cor ; if 11xx, it's >9, thus need correction

jnb ind.1,ck_underflow ; 100x, number is 8 or 9, no decimal correction

; here if 101x, decimal adjust

dec_corstc ; clear effect of previous carry

sub ind,#6 ; decimal correction by subtracting 6

; finish dealing with least significant digit, proceed to MSD

ck_underflow clrb fsr.2 ; points to operand1

jnb ind.0,dadj_msd ; stored carry=0, decimal adjust

; test if MSD > 9

setb fsr.2 ; points back to operand2

jnb ind.7,next_bsub ; if 0xxx, it's <9, add next byte

jb ind.6,dadj_msd ; if 11xx, it's >9, thus need correction

jnb ind.5,next_bsub ; if 100x, it's <9
© 2000 Ubicom, Inc. All rights reserved. - 4 - www.ubicom.com

AN13 SX Arithmetic Routines
;here if 101x, decimal adjust

dadj_msd stc ; clear effect of carry

setb fsr.2 ; make sure that it's pointing at the result

sub ind,#$60 ; decimal correct

next_bsub clrb fsr.2 ; points to stored carry

sb ind.0 ; skip if not set

clc ; restore stored carry

inc fsr ; next byte

sb fsr.2 ; done? (fsr=$0c?)

jmp bsub_more ; not yet

ret ; done, return to calling routine

; move the result to operand1 and change operand2 to 0

; the intention is prepare for 0-result or getting the magnitude of a

; negative BCD number which is in complement form

neg_result mov fsr,#operand2 ; points to

mov_more setb fsr.2 ; operand2

mov W,ind ; temp. storage

clr ind ; clear operand2

clrb fsr.2 ; points to operand1

mov ind,W ; store result

inc fsr ; next byte

sb fsr.2 ; done?

jmp mov_more ; no

ret ; yes, finish
© 2000 Ubicom, Inc. All rights reserved. - 5 - www.ubicom.com

SX Arithmetic Routines AN13
4.0 Binary to BCD Conversion
In many situations, we will find BCD representations very
difficult to deal with, especially when anything more than
addition and subtraction is needed, due to the need for
decimal correction. This problem is alleviated by repre-
senting the numbers internally as binary to facilitate com-
putation and convert it to BCD for display or printing
purposes. In this section, we will discuss how that is
implemented.

There are many different algorithms for binary to BCD
conversions. We will only consider one of the easiest to
implement, that is, shifting the binary number to the left
and let the most significant bit be shifted into a BCD
result. The result is then continuously decimally corrected
to give a right answer.

In the following code segment, we have implemented a
32 bit binary number to 10 digit BCD conversion routine.
With the RL instruction of the SX, the shift operation of
both numbers together is a breeze.

Decimal correction is done here differently than before.
Instead of checking the carry and digit carry, we check
the BCD value before a shift and adjust it properly. This
will save us both code and time. This was not possible
before in our addition and subtraction routines since we
were not doing shift operations.

To see how this is done, let’s look at some examples:

From the table, we can see that whenever the current
value is 4 or less, then it is okay. For all digits of 5 and
above, decimal correction is needed. This can be done
by adding 6 to the shifted value or by adding 3 to the cur-
rent value. If we add 3 to all current values and check if
they are greater than 7, all number satisfying this condi-

tion will need decimal correction and we will just keep
that added number, otherwise we fall back to the original
number.

This decimal correction process applies also to the most
significant digit, except we use $30 instead of 3.

; 32 bit binary to BCD conversion

; entry: 32 bit binary number in $10-13

; exit: 10 digit BCD number in $14-18

; algorithm= shift the bits of binary number into the BCD number and

; decimal correct on the way

bindec mov count,#32

mov fsr,#bcd_number ; points to the BCD result

clr_bcd clr ind ; clear BCD number

snb fsr.3 ; reached $18?

jmp shift_both ; yes, begin algorithm

inc fsr ; no, continue on next byte

jmp clr_bcd ; loop to clear

Current value Binary Shifted value

in binary

Shifted value

in hex

What the shifted value should

be in BCD

0 0000 0000 0 0

1 0001 0010 2 2

2 0010 0100 4 4

3 0011 0110 6 6

4 0100 1000 8 8

5 0101 1010 A 10

6 0110 1100 C 12

7 0111 1110 E 14

8 1000 1 0000 10 16

9 1001 1 0010 12 18
© 2000 Ubicom, Inc. All rights reserved. - 6 - www.ubicom.com

AN13 SX Arithmetic Routines
shift_both mov fsr,#bin_number ; points to the binary number input

clc ; clear carry, prepare for shifting

shift_loop rl ind ; shift the number left

snb fsr.3 ; reached $18? (finish shifting both

; numbers)

jmp check_adj ; yes, check if end of everything

inc fsr ; no, next byte

jmp shift_loop ; not yet

check_adj decsz count ; end of 32 bit operation?

jmp bcd_adj ; no, do bcd adj

ret

bcd_adj mov fsr,#bcd_number ; points to first byte of the BCD result

bcd_adj_loop call digit_adj ; decimal adjust

snb fsr.3 ; reached last byte?

jmp shift_both ; yes, go to shift both number left again

inc fsr ; no, next byte

jmp bcd_adj_loop ; looping for decimal adjust

digit_adj ; consider LSD first

mov W,#3 ; 3 will become 6 on next shift

add W,ind ; which is the decimal correct factor to be added

mov temp,W

snb temp.3 ; > 7? if bit 3 not set, then must be <=7, no adj.

mov ind,W ; yes, decimal adjust needed, so store it

; now for the MSD

mov W,#$30 ; 3 for MSD is $30

add W,ind ; add for testing

mov temp,W

snb temp.7 ; > 7?

mov ind,W ; yes, store it

ret
© 2000 Ubicom, Inc. All rights reserved. - 7 - www.ubicom.com

SX Arithmetic Routines AN13
5.0 BCD to Binary Conversion
Input from keyboards can be easily rendered into BCD
form. To let the CPU process the number effectively,
however, binary representation is more desirable.

In this section we will discuss how the BCD to binary con-
version process is implemented. It is basically a reversal
of the binary to BCD conversion process: we shift the
BCD number to the right and let the least significant bit
be shifted into a binary result. The original BCD number
is then continuously decimally corrected to maintain the
BCD format.

In the following code segment, we have implemented a
10 digit BCD number to 32 bit binary number conversion
routine. With the RR instruction of the SX, the shift opera-
tion of both numbers together can be very efficiently
implemented.

Decimal correction is done again differently here since
we are shifting right instead of shifting left.

To derive the algorithm, let’s look at the following table:

As we can see, whenever the shifted value has a 1 on bit
3, the result should be subtracted with 3 to make it cor-
rect. And this is the algorithm that we have adopted in the

following code: shift right both numbers and decimally
adjust the BCD number along the way. Note that for the
most significant digit in each BCD number, we subtract
$30 instead of 3 to account for its position.

; 10 digit BCD to 32 bit binary conversion

; entry: 10 digit BCD number in $14-18

; exit: 32 bit binary number in $10-13

; algorithm= shift the bits of BCD number into the binary number and decimal

; correct on the way

decbin mov count,#32 ; 32 bit number

mov fsr,#bin_number; points to the binary result

clr_bin clr ind ; clear binary number

inc fsr ; no, continue on next byte

snb fsr.2 ; reached $13? (then fsr will be $14 here)

jmp shift_b ; yes, begin algorithm

jmp clr_bin ; loop to clear

shift_b mov fsr,#bcd_number+4 ; points to the last BCD number

clc ; clear carry, prepare for shifting right

shft_loop rr ind ; shift the number right

dec fsr ; reached $10? (finish shifting both numbers)

sb fsr.4 ; then fsr will be $0f

Current value Binary Shifted value

in binary

Shifted value

in hex

What the shifted value

should be in BCD

0 0000 0000 0 0

2 0010 0001 1 1

4 0100 0010 2 2

6 0110 0011 3 3

8 1000 0100 4 4

10 10000 1000 8 5

12 10010 1001 9 6

14 10100 1010 A 7

16 10110 1011 B 8

18 11000 1100 C 9
© 2000 Ubicom, Inc. All rights reserved. - 8 - www.ubicom.com

AN13 SX Arithmetic Routines
jmp chk_adj ; yes, check if end of everything

jmp shft_loop ; not yet

chk_adj decsz count ; end of 32 bit operation?

jmp bd_adj ; no, do bcd adj

ret

bd_adj mov fsr,#bcd_number ; points to first byte of the BCD result

bd_adj_loop call dgt_adj ; decimal adjust

snb fsr.3 ; reached last byte?

jmp shift_b ; yes, go to shift both number right again

inc fsr ; no, next byte

jmp bd_adj_loop ; looping for decimal adjust

; prepare for next shift right

; 0000 --> 00000 -->0

; 0010 --> 0001 2 -->1

; 0100 --> 0010 4 -->2

; 0110 --> 0011 6 -->3

; 1000 --> 0100 8 -->4

; 1 0000 --> 1000 10-->8 !! it should be 5, so -3

; 1 0010 --> 1001 12-->9 !! it should be 6, so -3

; in general when the highest bit in a nibble is 1, it should be subtracted with 3

dgt_adj ; consider LSD first

sb ind.3 ; check highest bit in LSD, =1?

jmp ck_msd ; no, check MSD

stc ; prepare for subtraction, no borrow

sub ind,#3 ; yes, adjust

; now for the MSD

ck_msd sb ind.7 ; highest bit in MSD, =1?

ret ; no

; yes, do correction

stc ; no borrow

sub ind,#$30 ; this is a 2 word instruction, and cannot be skipped

ret
© 2000 Ubicom, Inc. All rights reserved. - 9 - www.ubicom.com

SX Arithmetic Routines AN13
6.0 Multiplication
Here we will consider both 8 bit by 8 bit and 16 bit by 16
bit multiplications. As we can see, the basic algorithms
are all the same regardless of the number of bits
involved.

Let’s first discuss how the multiplier, multiplicand, and the
result are generally organized.

The lower part of the result are initially occupied by the
multiplier and the upper part is cleared to zero.

To summarize, the following steps are needed to do a
multiplication by software:

• Initialize multiplier, multiplicand from calling program;
• clear the upper product to zero;
• shift right the whole product to the right;
• if carry is 1, i.e., the lsb of the multiplier is one, then add

the multiplicand to the upper product;
• repeat step 3 and 4 until all bits of the multiplier has

been shifted out
This algorithm is amazingly elegant as we can see in the
next program segment.

As implemented for 8 bit by 8 bit multiplication, this rou-
tine requires only 2 bytes of RAM provided the multipli-
cand is pre-loaded into the W, working register.

; 8 bit x 8 bit multiplication (RAM efficient, 2 bytes only)

; entry: multiplicand in W, multiplier at 09

; exit : product at $0a,09

; cycles

mul88 mov upper_prdt,W ; 1 store W

mov count,#9 ; 2 set number of times to shift

mov W,upper_prdt ; 1 restore W (multiplicand)

clr upper_prdt ; 1 clear upper product

clc ; 1 clear carry

; the following are executed [count] times

m88loop rr upper_prdt ; 1 rotate right the whole product

rr multiplier ; 1 check lsb

snc ; 1 skip addition if no carry

add upper_prdt,W ; 1 add multiplicand to upper product

no_add decsz count ; 1/2 loop 9 times to get proper product

jmp m88loop ; 3 jmp to rotate the next half of product

ret ; 3 done...

; one time instructions = 1+2+1+1+1+3= 9 cycles

; repetitive ones= (1+1+1+1+1+3)9-3+2=71

; total worst case cycles=80 cycles

A faster implementation can be obtained if we unroll the loop and repeat the code using a macro:

; fast 8 bit x 8 bit multiplication (RAM efficient, 2 bytes only)

; entry: multiplicand in W, multiplier at 09

; exit : product at $0a,09

; macro to rotate product right and add

rra MACRO

rr upper_prdt ; 1 rotate right the whole product

rr multiplier ; 1 check lsb

snc ; 1 skip addition if no carry

add upper_prdt,W ; 1 add multiplicand to upper product

ENDM

; cycles

fmul88 clr upper_prdt ; 1 clear upper product

clc ; 1 clear carry

; the following are executed [count] times

Multiplicand

Upper product Multiplier (lower product)
© 2000 Ubicom, Inc. All rights reserved. - 10 - www.ubicom.com

AN13 SX Arithmetic Routines
rra ; call the macro 9 times

rra

rra

rra

rra

rra

rra

rra

rra

ret ; 3 done...

; one time instructions = 1+1+3= 5 cycles

; repetitive ones= (1+1+1+1)9=36

; total worst case cycles=41 cycles

We have saved almost half of the time by using macros
and eliminating the loop control. Notice that in both algo-
rithms, 9 shifts are needed to obtain a correct result. The
last shift is used to align the result properly.

The same algorithm has been implemented for 16 bit by
16 bit multiplication, which is included as follows:

; 16 bit x 16 bit multiplication

; entry: multiplicand in $09,08, multiplier at $0b,$0a

; exit : 32 bit product at $0d,$0c,$b,$a

; cycles

mul1616

mov count,#17 ; 2 set number of times to shift

clr upper_prdt ; 1 clear upper product

clr upper_prdt+1 ; 1 higher byte of the 16 bit upper product

clc ; 1 clear carry

; the following are executed [count] times

m1616loop rr upper_prdt+1 ; 1 rotate right the whole product

rr upper_prdt ; 1 lower byte of the 16 bit upper product

rr mr16+1 ; 1 high byte of the multiplier

rr mr16 ; 1 check lsb

sc ; 1 skip addition if no carry

jmp no_add ; 3 no addition since lsb=0

clc ; 1 clear carry

add upper_prdt,md16 ; 1 add multiplicand to upper product

add upper_prdt+1,md16+1 ; 1 add the next 16 bit of multiplicand

no_add decsz count ; 1/2 loop [count] times to get proper product

jmp m1616loop ; 3 jmp to rotate the next half of product

ret ; 3 done...

; one time instructions = 8 cycles

; repetitive ones= 15*16+11+2=253

; total worst case cycles=261 cycles

Note that the only difference is the number of bits that we
shift, and more bytes to add and rotate. Other than that, it
is basically the same as a 8 x 8 multiplication. A fast ver-
sion is also available but it is too lengthy to list here.
Please see the program file for details. A saving of 26%
is achieved here by unrolling the loop and reduced the
cycles to 193.
© 2000 Ubicom, Inc. All rights reserved. - 11 - www.ubicom.com

SX Arithmetic Routines AN13
7.0 Division
Finally, we are going to tackle the most difficult arithmetic
problem: that of division. If the reader can recall how he
or she was taught how to do division by long hand, then
we are very close to understanding the algorithm.

In division by long hand, we examine the dividend digit by
digit, and see if it is bigger than the divisor. If it is, then we
subtract the divisor or the multiples of it from the dividend
and write down that multiple as a digit in our quotient.
This process is repeated until all digits of the dividend are
exhausted.

This exact process is being implemented in the following
code segment with one difference with our long hand

division: we are dealing with binary numbers here. So we
modify the algorithm as follows:

• initialize the result and remainder register;
• shift the dividend bit by bit into the remainder register

(use as a placeholder here);
• do a trial subtraction of the partial dividend in the re-

mainder register and the divisor;
• if the partial dividend is bigger than the divisor, then we

subtract the divisor from it and record a 1 bit for the
quotient

• shift the quotient to left so that we can calculate the
next bit, and repeat step 2 thru 4 till all bits of the divi-
dend is exhausted.

; 16 bit by 16 bit division (b/a)

; entry: 16 bit b, 16 bit a

; exit : result in b, remainder in remainder

; cycles

div1616 mov count,#16 ; 2 no. of time to shift

mov d,b ; 2 move b to make space

mov d+1,b+1 ; 2 for result

clr b ; 1 clear the result fields

clr b+1 ; 1 one more byte

clr rlo ; 1 clear remainder low byte

clr rhi ; 1 clear remainder high byte

; subtotal=10

divloop clc ; 1 clear carry before shift

rl d ; 1 check the dividend

rl d+1 ; 1 bit by bit

rl rlo ; 1 put it in the remainder for

rl rhi ; 1 trial subtraction

; subtotal=5

stc ; 1 prepare for subtraction, no borrow

mov W,a+1 ; 1 do trial subtraction

mov W,rhi-W ; 1 from MSB first

sz ; 1/2 if two MSB equal, need to check LSB

jmp chk_carry ; 3 not equal, check which one is bigger

;

; if we are here, then z=1, so c must be 1 too, since there is no

; underflow, so we save a stc instruction

mov W,a ; 1 equal MSB, check LSB

mov W,rlo-W ; 1 which one is bigger?

; subtotal=7

chk_carry sc ; 1/2 partial dividend >a?

jmp shft_quot ; 3 no, partial dividend < a, set a 0 into quotient

; if we are here, then c must be 1, again, we save another stc instruction

; yes, part. dividend > a, subtract a from it

sub rlo,a ; 2 store part. dividend-a into a

sub rhi,a+1 ; 2 2 bytes

stc ; 1 shift a 1 into quotient

; subtotal=7 worst case

shft_quot rl b ; 1 store into result

rl b+1 ; 1 16 bit result, thus 2 rotates
© 2000 Ubicom, Inc. All rights reserved. - 12 - www.ubicom.com

AN13 SX Arithmetic Routines
decsz count ; 1/2

jmp divloop ; 3

; subtotal=6, 4 on last count

ret ; 3

; one time instructions=13

; repetitive ones=(19+6)*15+19+4=398

; total=411

The fast version of this division algorithm is implemented
by unrolling the loop and repeat all the instructions inside
it. It consumes 336 cycles and therefore saves 18% of
time

8.0 Conclusions
The SX instructions, namely, ADD (add), ADDB (add bit),
SUB (subtract), SUBB (subtract bit), CLC (clear carry),
STC (set carry), RL (rotate left 1 bit), RR (rotate right 1
bit), are very useful in implementing arithmetic routines.
With careful planning and smart algorithm design, all nor-
mal arithmetic functions can be accomplished.

9.0 Modifications and further options
There are plenty of literature on computer arithmetic and
the implementations included in this application note is
not the only way of doing it. It only serves as an example
for the readers and help them to bring their product to the
market faster by using existing routines.

To test the example programs, remember to set the
equate options mentioned in the first sentence of the pro-
gram listing properly (for example, to use BCD routines,
set bcd_test equ 1 and reset all other options to 0). This
will enable you to include only the code you need in a
program.
© 2000 Ubicom, Inc. All rights reserved. - 13 - www.ubicom.com

© 2000 Ubicom, Inc. All rights reserved. - 14 - www.ubicom.com

Lit#: AN13-02

Sales and Tech Support Contact Information

For the latest contact and support information on SX devices, please visit the Ubicom website at www.ubicom.com.
The site contains technical literature, local sales contacts, tech support and many other features.

1330 Charleston Road
Mountain View, CA 94043

Tel.: (650) 210-1500
Fax: (650) 210-8715

E-Mail: sales@ubicom.com
Web Site: www.ubicom.com

SX Arithmetic Routines AN13

