Preliminary

October 1993

Description

The CB-C7, 3-volt cell-based product family is intended for low power portables and battery-operated products. A power reduction of up to 60 percent is now possible compared with the CB-C7, 5 -volt. The CB-C7, 3 -volt is manufactured with a 0.8 -micron (drawn) process with twoor three-layer metalization and is offered in 22 I/O ring sizes. Typical applications include handheld terminals, personal digital office assistants, word spellers, cellular phones and a variety of high-volume, portable PC-based applications. The family allows designing complex logic functions, up to 237,000 usable gates of user-defined logic. Megamacro blocks may include industry-standard CPU cores, peripherals, and analog functions - thus enabling complete system-on-a-chip solutions.
The CB-C7 series consists of two types of architectures, a Fast Turn FT-type embedded array and a High Density HDtype full standard cell. The FT-type uses fully-diffused standard cell embedded cores with sea-of-gates userdefinable logic. The FT solution offers gate-array-like turnaround times while allowing the incorporation of large embedded functions. Another important advantage is that the FT-type is well-suited for multiple designs built around a common embedded CPU function, such as the V30HL (8086) CPU.

The HD-type is comprised of fully-diffused standard cell architecture for both the embedded cores and the userdefined logic area. This solution offers an optimal die size for economic cost-effective volume production. Full gate delay models are available for both in Verilog ${ }^{\circledR}$, a golden simulator, as part of NEC's OpenCAD ${ }^{\circledR}$ Design System.

Features

- Low voltage cell-based library means power savings of up to 60% over 5 V solutions
- $1.6 \mu \mathrm{~W} /$ gate per MHz power dissipation at 3 V
- Standby current $I_{D D Q}<150 \mathrm{nA}$
- Advanced 0.8μ drawn gate ($0.6 \mu \mathrm{~L}_{\text {eff }}$) length CMOS technology with three-layer metalizations
- Up to 237,000 usable gates on 3-layer HD full standard cell product with $440 \mathrm{I} / \mathrm{Os}$ and a pad pitch of $124 \mu \mathrm{~m}$
- Extensive embedded core library includes CPU, analog, and video DAC functions
- Datapath compiler available for multipliers, FIFOs, and register files

Figure 1. Integrated HDD Solution with CB-C7 Cell-Based ASIC and Embedded Megafunctions

Digital Megamacros in Library

| Compatible
 Device | NEC
 Code | Description |
| :--- | :---: | :--- |$|$| 8088 | V20HL (NA70108H) | 8-bit CPU |
| :--- | :---: | :--- |
| 8086 | V30HL (NA70116H) | 16-bit CPU |
| Z80 | NA70008A | Z80™ 8-bit CPU |
| $80 C 42$ | NA80C42H | Keyboard Controller |
| $8237 A$ | NA71037 | Programmable DMA Controller |
| $8251 A$ | NA71051 | Serial Communications Controller |
| 8254 | NA71054 | Interval Timer |
| $8255 A$ | NA71055 | Peripheral Interface |
| $8259 A$ | NA71059 | Interrupt Controller |
| $4991 A$ | NA4991A | Real Time Clock |
| 72020 | NA72020 | Graphics Display Controller |

Analog Megamacros in Library

NEC Code	Description
XXXA	135 MHz triple 8-bit video DAC
AADA8GPC	8-bit general-purpose DAC
AACP25NA	High-speed (25ns) comparator
AACP80NA	High-speed (80ns) comparator
AACP01UA	General-purpose comparator
AAOP10MA	High-speed operational amplifier
AAOP01MA	General-purpose operative amplifier
AASWGPCA	Analog switch with control
AASWGPTA	Analog switch with control

[^0]
OpenCAD Design System

CB-C7 is supported by the OpenCAD Design System, an ASIC design environment that merges the best of today's most powerful CAD ASIC software design tools and proprietary tools, such as a floorplanner and module compilers, into a single environment.

Sample design kits are available at no charge to qualified users: contact the NEC ASIC Design Center nearest you for more information. A software license agreement is required.

Digital Megafunctions

In addition to the V30HL/V20HL 8086, 8088 product families and support peripherals, NEC offers complex standard IC functions as well as A/D and D/A converters for multimedia applications. Compiled RAM and ROM are also available to satisfy a myriad of different product applications.

Analog Blocks

NEC is building upon its expertise in analog standard ICs by now offering select members of its analog family as analog megamacros. These megamacros are layed out in the I/O area to maximize die area in the core for digital functions and user-defined logic. This separation of the analog and digital functions and separate analog V_{DD} and V_{SS} line also contributes to better noise isolation.
Digital and analog functions on a CB-C7 cell-based array are tested separately.

Test and Emulation Bus Architecture

The test and emulation bus architecture used for CB-C7 design methodology approach to the testing and emulation of embedded functions. It allows the emulation of the production chip for system validation, reuse of the test bus circuit and use of standard micro IC functional test vectors and system vectors in a modularized fashion. It also provides real-time emulation support and its test bus structure allows testing of on-chip RAM/ROM or analog blocks.

On-Chip Compiled Memory

RAM and ROM blocks can be custom compiled in the CB-C7 design environment.
The RAM and ROM compiler allows ASIC designers to generate silicon-efficient memory blocks of specific size and performance to suit exact system requirements quickly and efficiently.

The table of compilable RAM and ROM, shown on page 4, describes three different MUX ratios along with the minimum and maximum size. For the 16:1 MUX, the minimum word depth is 256 and the minimum bit width is 1. The word depth can increase by 64 words in increments up to 2 K and the bit width can increase by 1 bit up to a maximum of 8 bits. The other RAM and ROM configurations are determined in the same fashion.
Typical examples of applications containing digital memory and analog cores and their step size is shown in Figure 2.

3 V Operation

CB-C7 CMOS is ideal for low power, high volume, battery-operated products. The CB-C7 process has been recharacterized to operate at two voltage levels, $5 \mathrm{~V} \pm$ 10% and $3.0 \mathrm{~V} \pm 10 \%$. Not only have macrocells been recharacterized to operate at the lower voltage, but complex megamacros and compiled memory as well.

Figure 2. Typical Application Example (See Table 2)

Trademarks

${ }^{\circledR}$ OpenCAD is a registered trademark of NEC Electronics
TMZ80 is a trademark of Zilog, Inc.
${ }^{\bullet}$ Verilog is a registered trademark of Cadence Design System, Inc. TMMACRObus is a trademark of NEC Electronics Inc.

Table 1. CB-C7 Step Sizes and Usable Gate Count

					HD-Type Usable Gates ${ }^{\mathbf{2}}$		FT-Type Usable Gates ${ }^{2}$
No.	Step Size	I/O $^{\mathbf{1}}$	Total Raw Grids	2-Layer Metal	3-Layer Metal	2-Layer Metal	3-Layer Metal
1	B18	88	35,400	5,930	7,040	3,140	3,860
2	B57	104	49,600	8,840	10,430	4,720	5,760
3	B97	120	66,600	12,390	14,560	6,660	8,070
4	C37	136	86,000	16,530	19,370	8,910	10,760
5	C76	152	107,700	21,150	24,740	11,440	13,780
6	D16	168	131,800	26,460	30,900	14,340	17,230
7	D55	184	158,300	32,230	37,590	17,490	20,990
8	D75	192	172,500	35,390	41,260	19,230	23,050
9	E15	208	202,700	42,160	49,100	22,930	27,450
10	E54	224	235,800	49,360	57,440	26,870	32,140
11	E94	240	270,800	57,290	66,630	31,220	37,300
12	F34	256	307,800	65,810	76,500	35,890	42,850
13	F74	272	348,300	74,730	86,820	40,780	48,660
14	G14	288	390,700	84,410	98,030	46,100	54,970
15	G53	304	435,500	94,480	109,680	51,620	61,520
16	G93	320	482,100	105,330	122,240	57,580	68,590
17	H33	336	531,700	116,770	135,470	63,860	76,040
18	H72	352	583,800	128,550	149,100	70,330	83,710
19	J32	376	662,900	147,680	171,230	80,830	96,170
20	J71	392	720,900	160,890	186,510	88,090	104,770
21	K11	408	781,300	174,960	202,780	95,820	113,930
22	K90	440	907,800	204,550	236,990	112,070	133,200

Notes: 1. I/O may be configured as VDD/GND
2. Usable gates: equivalent estimated 2 -input NAND, will vary depedning ons pecific design
a. 2-layer metal
b. 3-layer metal
FT $=55 \%$ utilization for routing
HD $=65 \%$ utilization for routing
c. Grid/gate ratio* $\mathrm{FT}=4.3$ grid/gate ratio
FT $=65 \%$ utilization for routing
$H D=75 \%$ utilization for routing
$H D=2.8$
d. Grid to gate ratio based on conversion from other libraries will be different. Contact NEC Design Center for die size estimation

* Based on CMOS-6 L302 cell equivalents

Table 2. Examples of Core Use (Refer to Figure 2)

Application	Core	UDL*	I/O	Step Size	Metalization	Package
Cellular Phone	Z80	40,000	102	E94	3LM	120 TQFP
Wireless or GPS	V20HL	10,000	88	D55	3LM	100 TQFP
Hard Disk Drive	V20HL 71054 71059	3,000	80	D55	2 LM	100 TQFP
Graphics Controller	Triple Video DAC HS RAM 256 W $\times 8$ bits $\times 3$	40,000	182	E94	3LM	208 PQFP
Document Scanner	ROM 256 W $\times 16$ bits RAM $64 W \times 8$ bits $\times 5$	3,000	88	C37	2 2LM	100 QFP

[^1]Table 3. Compilable RAM, ROM and Datapath Elements for CB-C7

Compiled SRAM				
-	Single port, asynchronous operation			
	Min Size	Max Size	Increment	
16:1 Column MUX	256×1	$2 \mathrm{~K} \times 8$	64 words, 1 bit	
8:1 Column MUX	128×1	$1 \mathrm{~K} \times 16$	32 words, 1 bit	
4:1 Column MUX	64×1	512×32	16 words, 1 bit	

Compiled High-Speed SRAM

- Single port, asynchronous high speed operation
- Speed: 12.6ns (typ) (512W x 8 bit)

Min Size	Max Size	Increment
16×1	$2 \mathrm{~K} \times 20$	16 words, 1 bit

Example: For a $8: 1$ column MUX minimum size is 16×1. Increments can thus be 16, 32,48 words up to 2 K max. Bit size can be a mimimum of 1 bit, one bit at time increments to 20 bits max.

* Please check with the Design Center for exact specifications and availability.

Examples for Compiled High-Speed SRAM: For a 8:1 column MUX, minimum size is 16×1. Increments can thus be $16,32,48$, words up to 2 K max. Bit size can be minimum of 1 bit, one bit at a time in increments to 20 bits max.

Compiled Dual Port RAM - Dual port, asynchronous operation - Speed: 43ns (typ) (512W x 8 bit)			
8:1 Column MUX	Min Size 16×1	Max Size $2 K \times 32$	Increment 16 words, 1 bit
	Compile gle port, asy ed: 63ns (typ)	ROM hronous op $(512 \mathrm{~W} \times 8$	ation
	Min Size	Max Size	Increment
32:1 Column MUX	512×1	$32 \mathrm{~K} \times 16$	512 words, 1 bit
16:1 Column MUX	256×2	$16 \mathrm{~K} \times 32$	256 words, 1 bit
8:1 Column MUX	128×4	$8 \mathrm{~K} \times 64$	128 words, 2 bits
Datapath Modules			
	Min Size	Max Size	Increment
Multiplier	6×6	32×32	2 bits
Register File	8×2	256×32	4 words, 1 bit
FIFO	8×2	256×32	2 words, 1 bit

CB-C7/3V

Absolute Maximum Ratings

Power supply voltage, V_{DD}	-0.5 to +6.5 V
Input/output voltage, $\mathrm{V}_{1} / \mathrm{V}_{\mathrm{O}}$	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$

Output current, I

$\mathrm{I}_{\mathrm{OL}}(\mathrm{min})=2.2 \mathrm{~mA}$ (typ)	8 mA
$\mathrm{I}_{\mathrm{OL}}(\mathrm{min})=4.4 \mathrm{~mA}($ typ $)$	16 mA
$\mathrm{I}_{\mathrm{OL}}(\mathrm{min})=6.6 \mathrm{~mA}$ (typ)	24 mA
Operating temperature, $\mathrm{T}_{\mathrm{OPT}}$	-40 to $+85^{\circ} \mathrm{C}$
Storage temperature, $\mathrm{T}_{\text {STG }}$	-65 to $+150^{\circ} \mathrm{C}$

Caution: Exposure to absolute maximum ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should not be operated outside the recommended operating conditions.

Input/Output Capacitance

$V_{D D}=V_{1}=0 \mathrm{~V} ; f=1 \mathrm{MHz}$

Terminal	Symbol	Typ	Max	Unit
Input	C_{IN}	10	20	pF
Output	$\mathrm{C}_{\text {OUT }}$	10	20	pF
I/O	$\mathrm{C}_{\text {I/O }}$	10	20	pF

Note:
(1) Values include package pin capacitance.

Power Consumption

Description	Limits (max)	Unit	Test Conditions
Internal cell (L302)	1.6	$\mu \mathrm{~W} / \mathrm{MHz}$	$\mathrm{F} / \mathrm{O}=2 ; \mathrm{L}=2 \mathrm{~mm}$

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Power supply voltage	V_{DD}	2.7	3.3	V
Ambient temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$
Input voltage	V_{I}	0	$\mathrm{~V}_{\mathrm{DD}}$	V
High-level input voltage	V_{IH}	$0.7 \mathrm{~V}_{\mathrm{DD}}$	V_{DD}	V
Low-level input voltage	V_{IL}	$0.3 \mathrm{~V}_{\mathrm{DD}}$	V_{DD}	V
Input rise or fall time (normal input)	$\mathrm{t}_{\mathrm{RI}}, \mathrm{t}_{\mathrm{FI}}$	0	200	ns
Input rise or fall time (Schmitt-trigger input)	$\mathrm{t}_{\mathrm{RI}}, \mathrm{t}_{\mathrm{FI}}$	0	10	ms
Positive Schmitt-trigger voltage	V_{P}	1.8	4.0	V
Negative Schmitt-trigger voltage	V_{N}	0.6	3.1	V
Hysteresis voltage	V_{H}	0.3	1.5	V

Note: The rise/fall time given for a Schmitt-trigger input buffer varies depending on the operating environment. Simultaneous switching of output buffers should be analyzed before deciding to use a Schmitt-trigger input buffer.

AC Characteristics

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Internal toggle frequency	$\mathrm{f}_{\text {TOG }}$	52			MHz	D-F/F; F/O = 2
Delay time, 2-input NAND Gate*						
Standard gate (F302) HD-type	$t_{\text {PD }}$		520 (HL)		ps	$\mathrm{F} / \mathrm{O}=1 ; \mathrm{L}=2 \mathrm{~mm}$
Standard gate (F302) HD-type	$t_{\text {PD }}$		870 (HL)		ps	$\mathrm{F} / \mathrm{O}=2 ; \mathrm{L}=1 \mathrm{~mm}$
Low power gate (L302) HD-type	$t_{\text {PD }}$		680 (HL)		ps	$\mathrm{F} / \mathrm{O}=1 ; \mathrm{L}=0 \mathrm{~mm}$
Low power gate (L302) HD-type	$t_{\text {PD }}$		1310 (HL)		ps	$\mathrm{F} / \mathrm{O}=2 ; \mathrm{L}=1 \mathrm{~mm}$
Delay time, Buffer						
Input buffer (FI01)	$t_{\text {PD }}$		760		ps	$\mathrm{F} / \mathrm{O}=2$; L $=2 \mathrm{~mm}$
Output buffer (FO01)	$t_{\text {PD }}$		4800		ps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{IOL}=4 \mathrm{~mA}$
Rise and Fall Times						
Output rise time (FO01)	t_{R}		TBD		ps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{IOL}=2.2 \mathrm{~mA}$
Input fall time (FO01)	t_{F}		TBD		ps	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{IOH}=-2 \mathrm{~mA}$

[^2]
DC Characteristics

$V_{D D}=3 \mathrm{~V} \pm 10 \% ; T_{A}=-40$ to $+85^{\circ} \mathrm{C}$

Parameter	Symbol	Min	Typ	Max	Unit	Conditions
Static current (Note 1)	IL		TBD	TBD	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$ or GND
Input leakage current						
Normal input	1		$\pm 10^{-5}$	± 8	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$ or GND
$50 \mathrm{k} \Omega$ pull-up	1	TBD	TBD	TBD	$\mu \mathrm{A}$	$V_{1}=$ GND
$5 \mathrm{k} \Omega$ pull-up	1	TBD	TBD	TBD	mA	$V_{1}=$ GND
$50 \mathrm{k} \Omega$ pull-down	1	TBD	TBD	TBD	$\mu \mathrm{A}$	$V_{1}=V_{D D}$
Off-state output leakage current						
Normal Input	l_{oz}		$\pm 10^{-5}$	± 8	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$ or GND
$50 \mathrm{k} \Omega$ pull-up	I_{Oz}	TBD	TBD	TBD	$\mu \mathrm{A}$	$V_{1}=$ GND
$5 \mathrm{k} \Omega$ pull-up	l_{Oz}	TBD	TBD	TBD	$\mu \mathrm{A}$	$V_{1}=$ GND
$50 \mathrm{k} \Omega$ pull-down	I_{Oz}	TBD	TBD	TBD	$\mu \mathrm{A}$	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$
Low-level output voltage (CMOS)						
	V_{OL}			0.4	V	$\mathrm{I}_{\mathrm{OL}}=2.2 \mathrm{~mA}$
	V_{OL}			0.4	V	$\mathrm{I}_{\mathrm{OL}}=4.4 \mathrm{~mA}$
	V_{OL}			0.4	V	$\mathrm{I}_{\mathrm{OL}}=6.6 \mathrm{~mA}$
High-level output voltage	V_{OH}	$\mathrm{V}_{\mathrm{DD}}-0.4$			V	$\mathrm{I}_{\mathrm{OH}}=-1.1 \mathrm{~mA}$
	V_{OH}	$\mathrm{V}_{\mathrm{DD}}-0.4$			V	$\mathrm{I}_{\mathrm{OH}}=-2.2 \mathrm{~mA}$
	V_{OH}	$\mathrm{V}_{\mathrm{DD}}-0.4$			V	$\mathrm{I}_{\mathrm{OH}}=-3.3 \mathrm{~mA}$

Notes:

(1) The maximum value reflects the use of pull-up/pull-down resistors and oscillator blocks. Contact an NEC ASIC Design Center for assistance in calculation.
(2) CMOS-level output buffer $\left(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Table 4. Package Options

Pad Ring Step Sizes	B18	B57	B97	C37	C76	D16	D55	D75	E15	E54	E94
Package Type											
Plastic Quad Flatpack (QFP)											
44-pin (0.8 mm lead pitch)	A	A	A	A	A	A	-	-	-	-	-
52-pin (1 mm lead pitch)	A	A	A	A	A	A	A	-	-	-	-
64-pin (1 mm lead pitch)	A	A	A	A	A	A	A	A	A	A	A
80-pin (0.8 mm lead pitch)	A	A	A	A	A	A	A	A	A	A	A
100-pin (0.65 mm lead pitch)	-	A	A	A	A	A	A	A	A	A	A
120-pin (0.8 mm lead pitch)	-	-	A	A	A	A	A	A	A	A	A
136-pin (0.65 mm lead pitch)	-	-	A	A	A	A	A	A	A	A	A
160-pin (0.65 mm lead pitch)	-	-	-	-	-	A	A	A	A	A	A
160'-pin (0.65 mm lead pitch)	-	-	-	-	-	-	-	A	A	A	A
160²-pin (0.65 mm lead pitch)	-	-	-	-	-	-	-	A	A	A	A
Plastic Quad Flatpack (QFP-FP)											
100-pin (0.5 mm lead pitch)	-	A	A	A	A	A	A	A	A	A	A
120-pin (0.5 mm lead pitch)	-	-	A	A	A	A	A	A	A	A	A
144-pin (0.5 mm lead pitch)	-	-	-	A	A	A	A	A	A	A	A
160-pin (0.5 mm lead pitch)	-	-	-	-	-	A	A	A	A	A	A
160^{2}-pin (0.5 mm lead pitch)	-	-	-	-	-	-	-	A	A	A	A
176-pin (0.5 mm lead pitch)	-	-	-	-	-	A	A	A	A	A	A
$176{ }^{1}$-pin (0.5 mm lead pitch)	-	-	-	-	-	-	-	-	-	A	A
$176{ }^{2}$-pin (0.5 mm lead pitch)	-	-	-	-	-	-	-	-	-	A	A
208-pin (0.5 mm lead pitch)	-	-	-	-	-	-	-	-	-	-	A
Thin Plastic Quad Flatpack (TQFP)											
64-pin (0.5 mm lead pitch)	A	A	A	A	-	-	-	-	-	-	-
$80-\mathrm{pin}$ (0.5 mm lead pitch)	A	A	A	A	-	-	-	-	-	-	-
100^{1}-pin (0.5 mm lead pitch)	-	A	A	A	A	A	A	A	A	-	-
Plastic Leaded Chip Carrier (PLCC)											
68-pin (50 mils lead pitch)	-	-	-	A	A	A	A	A	A	A	-
84-pin (50 mils lead pitch)	-	-	-	A	A	A	A	A	A	A	-

1 = Cu lead frame
A = Available or under development
2 = Cu lead frame and heat sink

- = Unavailable

Note: NEC reserves the right to alter these package options based on the results of qualification. Each cell-based design/package combination must be cleared for manufacturing suitability. For the latest package availability for CB-C7, please contact your local NEC ASIC Design Center.

Typical CB-C7 Package Marking

CB-C7 Numbering System

Part Number	$\begin{array}{c}\text { Description } \\ \mu \text { PD93XXX }\end{array}$		
μ CD94XXX	$\begin{array}{l}\text { Contains logic only or logic plus RAM } \\ \text { and/or ROM }\end{array}$		
μ Contains the same as μ PD93XXX but			
with ROM code change		$\}$	Same as μ mD93XXX but contains
:---			
megamacro blocks, such as a			
$710 X X X$ or V20HL/V30HL			
μ Same as μ PD95XXX but with a ROM			
code change			

Table 4. Package Options (Cont'd)

Pad Ring Step Size	F34	F74	G14	G53	G93	H33	H72	J32	J71	K11	K90
Package Type											
Plastic Quad Flatpack (QFP)											
64-pin (1 mm lead pitch)	A	-	-	-	-	-	-	-	-	-	-
$80-\mathrm{pin}$ (0.8 mm lead pitch)	A	-	-	-	-	-	-	-	-	-	-
100-pin (0.65 mm lead pitch)	A	-	-	-	-	-	-	-	-	-	-
120-pin (0.8 mm lead pitch)	A	A	A	A	A	A	A	A	-	-	-
136 -pin (0.65 mm lead pitch)	A	A	A	A	A	A	A	A	-	-	-
160-pin (0.65 mm lead pitch)	A	A	A	A	A	A	A	A	A	A	A
$160{ }^{1}$-pin (0.65 mm lead pitch)	A	A	A	A	A	A	A	A	A	A	A
$160{ }^{2}$-pin (0.65 mm lead pitch)	A	A	A	A	A	A	A	A	A	A	A
$184{ }^{1}$-pin (0.65 mm lead pitch)	A	A	A	A	A	A	A	A	A	A	A
Plastic Quad Flatpack (QFP-FP)											
100-pin (0.5 mm lead pitch)	A	A	-	-	-	-	-	-	-	-	-
120-pin (0.5 mm lead pitch)	A	A	A	A	A	A	A	-	-	-	-
144-pin (0.5 mm lead pitch)	A	A	A	A	A	A	A	-	-	-	-
160-pin (0.5 mm lead pitch)	A	A	A	A	A	A	A	A	A	A	A
160^{2}-pin (0.5 mm lead pitch)	A	A	A	A	A	A	A	-	-	-	-
176-pin (0.5 mm lead pitch)	A	A	A	A	A	A	A	A	A	A	A
176'-pin (0.5 mm lead pitch)	A	A	A	A	A	A	A	A	A	A	A
176^{2}-pin (0.5 mm lead pitch)	A	A	A	A	A	A	A	-	-	-	-
208-pin (0.5 mm lead pitch)	A	A	A	A	A	A	A	A	A	A	A
208'-pin (0.5 mm lead pitch)	-	-	A	A	A	A	A	A	A	A	A
$208{ }^{2}$-pin (0.5 mm lead pitch)	-	-	A	A	A	A	A	A	A	A	A
240^{1}-pin (0.5 mm lead pitch)	-	-	A	A	A	A	A	A	A	A	A
$256{ }^{1}$-pin (0.4 mm lead pitch)	-	-	A	A	A	A	A	A	A	A	A
272^{-1}-pin (0.5 mm lead pitch)	-	-	-	-	-	-	-	A	A	A	A
304^{1}-pin (0.5 mm lead pitch)	-	-	-	-	-	-	-	-	-	A	A

$\begin{array}{ll}1=\text { Cu lead frame } & A=\text { Available or under development } \\ 2=\text { Cu lead frame and heat sink } & -=\text { Unavailable }\end{array}$
Note: NEC reserves the right to alter these package options based on the results of qualification. Each cell-based design/package combination must be cleared for manufacturing suitability. For the latest package availability for CB-C7, please contact your local NEC ASIC Design Center.

Figure 3. Popular CB-C7 Package 100-pin TQFP — $\square 14$ mm Body Size

NEC's ASIC Design System

NEC supports its ASIC products with a comprehensive CAD system that significantly reduces the time and expense usually associated with the development of semi-custom devices. NEC's OpenCAD Design System is a front-end to back-end ASIC design package that merges several advanced CAE/CAD tools into a single structure. The design flow combines tools for floorplanning, logic synthesis, automatic test generation, accelerated fault-grading, full timing simulation, and advanced place-and-route algorithms. RAM/ROM and Datapath Compilers are also available for use in CB-C7 designs.

A top-down modeling methodology is possible by means of HDL specification. Designers can concentrate their design effort at a higher level of abstraction, specifying, modeling, and simulating their designs at a systems level. This leaves the details of the gate-level implementation to the synthesis tools. After having verified proper functionality, designers are free to explore functional and architectural trade-offs, and can optimize chip performance while minimizing chip area. An engineer can
evaluate several architectures and select the best solution before committing to silicon. The design flow is shown below.

One of the key benefits of the ASIC design flow is that sign-off simulation can be accomplished at the customer's site since NEC offers designers a choice of simulators with the "golden simulator" status. Golden simulator status means that after receiving the post place-and-route simulation results from the customer, NEC can proceed directly to photomask production, bypassing the additional post-simulation steps.
To simplify simulation and testing of embedded cores and megamacros, full Verilog gate delay models are provided for all megamacros. The megamacros are then fully tested with a standard set of production test vectors.
The floorplanner tool provides a realistic estimate of wire length by grouping hierarchical blocks in a specific physical location on the chip. This allows for more accurate simulation results by minimizing critical path interconnect delays. The floorplanner also allows for placement of fully-diffused functions such as memory

Figure 4. CB-C7 HDL-Based Design Flow

and microprocessors. Graphical I/O assignment is available with the floorplanner. The floorplanner generates a delay file for post-floorplanner simulation, as shown in the design flow.

The ECO option allows the designer to make minor corrections in the design without requiring an entirely new placement and routing of the device. The tool ensures that relatively small changes, such as connectivity changes, will not greatly impact the timing of the current design. This can vastly improve turnaround time for the design.

NEC also incorporates proprietary tools to facilitate the design process. A single delay calculator is used for all CAE platforms to ensure consistent timing and simula-
tion results. A comprehensive design rule check, DRC, program reports design rule violations as well as chip utilization statistics for the design netlist. The generated report contains information such as cell count and usage rate as well as net and total pin counts. Unused input pins, violations in pin naming conventions, and exceeded fan-out limits are examples of the design rule violations reported by this program.

Sample design kits are available at no charge to qualified users: Contact an NEC ASIC design center for more information. NEC's ASIC Design Centers are listed on the back of this data sheet. A software license agreement is required.

CB-C7/3V

Cell Library List

The CB-C7 standard cell library offers a variety of blocks, macrocells and megafunctions. SSI library elements shown include gates, flip-flop circuits, and shift registers. The names and functions of these blocks are designed to be compatible with those of the CMOS-7 and CMOS-6 families.

Block List		
Block	Description	I_{oL} (mA)
Area ${ }^{1}$ Name		

Interface Blocks			
Input Buffers			
F101	Input buffer, CMOS in	-	12/6
Output Buffers			
FO01	Output buffer, CMOS out	4	8/5
FO02	Output buffer, CMOS out	8	16/9
FO03	Output buffer, CMOS out	12	16/9
B007	Output buffer, CMOS 3-state out	8	24/15

Open Drain Output Buffers

EXT1	Output buffer, N-ch open drain	4	$8 / 4$
Bi-directional I/O Buffers			
B001	I/O buffer, CMOS in, CMOS 3-state out		
$50 \mathrm{k} \Omega$ pull-up res.			

Function Blocks - Normal Power		
Inverters		$4 / 3$
F101	Inverter (F/O = 25) (FT)	$8 / 5$
F102	Inverter (F/O = 25) (FT)	-11
F103SD	Inverter (x3)	
F104SD	Inverter (x4)	
F108SD	Inverter (x5)	
Buffers		$8 / 5$
F111	Non-inverting buffer (F/O = 25) (FT)	$12 / 7$
F112	Non-inverting buffer (F/O = 51) (FT)	-19
F113SD	Non-inverting buffer	
F114SD	Non-inverting buffer	
F118SD	Non-inverting buffer	
		$24 / 13$
Delays		$40 / 22$

Block Name	Description	Area ${ }^{1}$ (grids)

Function Blocks - Normal Power (Cont)

NOR Gates

F202	2-input NOR	$8 / 5$
F203	3-input NOR	$12 / 7$
F204	4-input NOR	$16 / 10$
F208	8-input NOR	$24 / 18$
F222	2-input NOR, power	$16 / 9$
F223	3-input NOR, power	$24 / 13$
F224	4-input NOR, power	$32 / 17$

OR Gates

F212	2-input OR	$8 / 5$
F213	3-input OR	$12 / 6$
F214	4-input OR	$12 / 7$
F232	2-input OR, power	$12 / 7$
F233	3-input OR, power	$16 / 8$
F234	4-input OR, power	$16 / 9$

NAND Gates

F302	2-input NAND	$8 / 5$
F303	3-input NAND	$12 / 7$
F304	4-input NAND	$16 / 9$
F305	5-input NAND	$20 / 11$
F306	6-input NAND	$20 / 12$
F308	8-input NAND	$24 / 14$
F322	2-input NAND, power	$16 / 9$
F323	3-input NAND, power	$24 / 13$
F324	4-input NAND, power	$32 / 17$

AND Gates

F312	2-input AND	$8 / 5$
F313	3-input AND	$12 / 6$
F314	4-input AND	$12 / 7$
F332	2-input AND, power	$12 / 7$
F333	3-input AND, power	$16 / 8$
F334	4-input AND, power	$16 / 9$
AND-NOR Gates		
F421	2-wide 1-2-input AND-OR inverter	$12 / 7$
F422	3-wide 1-1-2-input AND-OR inverter	$16 / 10$
F423	2-wide 1-3-input AND-OR inverter	$16 / 9$
F424	2-wide 2-2-input AND-OR inverter	$16 / 9$
F425	3-wide 2-2-2-input AND-OR inverter	$24 / 14$
F426	2-wide 3-3-input AND-OR inverter	$24 / 13$
F429	4-wide 2-2-2-2-input AND-OR inverter	$32 / 18$
F442	2-wide 4-4 input AND-OR inverter	$32 / 17$
F462	3-wide 1-2-3 input AND-OR inverter	$24 / 14$

Block Name	Description	Area ${ }^{1}$ (grids)

OR-NAND Gates

F431	2-wide 1-2-input OR-AND inverter	12/7
F432	3-wide 1-1-2-input OR-AND inverter	$16 / 10$
F433	2-wide 1-3--input OR-AND inverter	$16 / 9$
F434	2-wide 2-2-input OR-AND inverter	$16 / 9$
F435	2-wide 2-3-input OR-AND inverter	$20 / 11$
F436	2-wide 3-3-input OR-AND inverter	$24 / 13$
F454	4-wide 2-2-2-2-input OR-AND inverter	$32 / 18$

Parity Generators		
F581	8-bit odd parity generator	$76 / 48$
F582	8-bit even parity generator	$76 / 48$

EX-OR Gate

F511	Exclusive-OR	$16 / 9$
EX-NOR	Gate	
F512	Exclusive-NOR	$16 / 9$
Adders		
F521	1-bit full-adder	$36 / 24$
F523	4-bit binary full-adder	$128 / 89$
Buffers		$20 / 11$
F531	3-state buffer with Enable	$20 / 11$
F532	3-state buffer with Enable low	$36 / 14$
F533	3-state buffer	
Decoders		$40 / 24$
F561	2-to-4 decoder	$52 / 31$
F981	2-to-4 decoder with Enable low	$104 / 60$
F982	3-to-8 decoder with Enable low	

Shift Registers		
F911	4-bit shift register with Reset	$136 / 75$
F912	4-bit serial/parallel shift register	$144 / 80$
F913	4-bit parallel shift register with Reset low, Load	$160 / 92$
F914	4-bit shift register	$112 / 61$

Multiplexers

L655	2-to-1 multiplexer (no enable/low drive)	$-/ 7$
F569	8-to-1 multiplexer	$72 / 46$
F570	4-to-1 multiplexer	$36 / 27$
F571	2-to-1 multiplexer	$20 / 16$
F572	Quad 2-to-1 multiplexer	$76 / 35$
Latches		$20 / 14$
F595	R-S latch	$24 / 14$
F601	D-latch	$24 / 15$
F602	D-latch with Reset	$28 / 16$

Block Name	Description	Area ${ }^{1}$ (grids)
Function Blocks - Normal Power (Cont)		
Latches (Cont)		
F604	D-latch with G driver low	24/14
F605	D-latch with G low, Reset low	28/16
F901	4-bit D-latch	80/45
F902	8 -bit D-latch	152/85
Flip-Flops		
F596	Synchronous R-S F/F with Set-Reset	44/28
F611	D-F/F	32/18
F614	D-F/F with Set-Reset	40/24
F617	D-F/F with Set-Reset low	40/24
F631	D-F/F C low	32/18
F637	D-F/F C low with Set-Reset low	40/24
F641	D-F/F, buffered	32/22
F644	D-F/F with Set-Reset, buffered	40/28
F647	D-F/F with Set-Reset low, buffered	40/28
F661	D-F/F C low, buffered	32/22
F667	D-F/F C low with Set-Reset low, buffered	40/28
F714	Toggle F/F with Set-Reset	36/23
F717	Toggle F/F with Set-Reset low	36/23
F737	Toggle low F/F with Set-Reset low	36/23
F744	Toggle F/F with Set-Reset, buffered	36/27
F747	Toggle F/F with Set-Reset low, buffered	36/27
F767	Toggle low F/F with Set-Reset low, buffered	36/27
F771	J-K F/F, buffered	40/24
F774	J-K F/F with Set-Reset, buffered	48/30
F777	J-K F/F with Set-Reset low, buffered	48/30
F781	J-K F/F C low, buffered	40/24
F787	J-K F/F C low with Set-Reset low, buffered	48/30
F791	Toggle F/F with Set-Reset and Toggle Enable	48/30
F792	Toggle low F/F with Set-Reset and Toggle Enable low	48/30
F922	4-bit D-F/F with Reset	136/75
F924	4-bit D-F/F	112/61
F615	D-F/F with RB	-/21
F616	D-F/F with SB	-/22
S999	2-to-1 Data Slector (Scan path)	-/10
Counters		
F961	4-bit synchronous binary counter with Reset low, buffered	240/158
F962	4-bit synchronous binary up counter with Reset low	152/102
Comparator		
F985	4-bit magnitude comparator	128/82
Miscellaneous		
F091	H, L level Generator	

Block Name	Description	Area ${ }^{1}$ (grids)	Block Name	Description	Area ${ }^{1}$ (grids)	
Function Blocks - Low Power			Function Blocks - Low Power (Cont)			
Inverters			Exclusive-OR			
L101	$(\mathrm{F} / \mathrm{O}=25)(\mathrm{FT})$	4/2	L511	EX-OR	12/8	
Buffers			Exclusive-NOR			
L111	Non-inverting buffer (F/O = 25) (FT)	4/3	L512	EX-NOR	12/8	
NOR Gates			Decoder			
L202	2-input NOR	4/3	L561	2-to-4 Decoder		
L203	3 -input NOR	8/4	L981	2-to-4 Decoder with Enable	68/42	
L204	4 -input NOR	8/5	L982	3-to-8 Decoder with Enable	68/42	
OR Gates			Multiplexer			
L212	2-input OR	8/4	L571	2-to-1 Multiplexer	16/10	
L213	3 -input OR	8/5	L572	Quad 2-to-1 Multiplexer	40/27	
L214	4-input OR	12/6				
NAND Gates			Latches			
			L901	4-Bit Latch	48/33	
L302	2-Input NAND	4/3	L902	8-Bit Latch	88/61	
L304	4-Input NAND	8/5	Shift Registers			
L305	5-Input NAND	12/6				
		8/7	L911	4-Bit Shift Register with Reset	104/60	
L306	6-Input NAND		L912	4-Bit Serial/Parallel Shift Register	112/60	
AND Gates			L913	4-Bit Parallel in Shift Register with Reset Low	128/80	
L312	2-Input AND	8/4	Flip Flops			
L313	3-Input AND	8/5	L922	4-Bit D-F/F with Reset	104/63	
L314	4-Input AND	12/6	L924	4-Bit D-F/F	80/49	
AND-NOR Gates			Megafunctions			
L421	2-Wide, 1-2-Input AND-OR Inverter	8/4	70108 H	V20HL 8-bit Microprocessor	TBA	
L422	3-Wide 1-1-2-Input AND-OR Inverter	8/5	70116H	V30HL 16-bit Microprocessor	TBA	
L423	2-Wide, 1-3-Input AND-OR Inverter	$8 / 5$	78350	78K3 16-bit Microprocessor	TBA	
L424	2-Wide, 2-2-Input AND-OR Inverter	8/5	70008A	Z80 8-bit Microprocessor	TBA	
L425	3-Wide, 2-2-2-Input AND-OR Inverter	12/8	72065B	765 Floppy Disk Controller	78,580	
L426	2-Wide, 3-3-Input AND-OR Inverter	12/7	71037	8237A Programmable DMA Controller	31,780	
L429	4-Wide, 2-2-2-2-Input AND-OR Inverter	16/10	71051	8251A USART	17,750	
L442	2-Wide, 4-4-Input AND-OR Inverter	12/9	71054	8254 Interval Timer	16,170	
L462	3-Wide, 1-2-3-Input AND-OR Inverter	12/8	71055	8255A Peripheral Interface	9540	
			71059	8259A Interrupt Controller	7510	
OR-NA	Gates		71088	8288 System Bus Controller	TBA	
L431	2-Wide, 1-2-Input OR-AND Inverter	8/4	4991A	Real Time Clock	TBA	
L432	3-Wide, 1-1-2-Input OR-AND Inverter	8/5				
L433	2-Wide, 1-3-Input OR-AND Inverter	8/5				
OR-AND Gates						
L434	2-Wide, 2-2-Input OR-AND Inverter	8/5				
L435	2-Wide, 2-3-Input OR-AND Inverter	12/6				
L436	2-Wide, 3-3-Input OR-AND Inverter	12/7				
L454	4-Wide, 2-2-2-2-Input OR-AND Inverter	16/10				

Notes:

NEC

Notes:

NEC ASIC DESIGN CENTERS

WEST

- 401 Ellis Street
P.O. Box 7241

Mountain View, CA 94039
TEL 415-965-6533
FAX 415-965-6788

- One Embassy Centre 9020 S.W. Washington Square Road Suite 400
Tigard, OR 97223
TEL 503-671-0177
FAX 503-643-5911

SOUTH CENTRAL/SOUTHEAST

- 16475 Dallas Parkway, Suite 380 Dallas, TX 75248
TEL 972-250-4522
FAX 972-931-8680
- Research Triangle Park

2000 Regency Parkway, Suite 455
Cary, NC 27511
TEL 919-460-1890
FAX 919-469-5926

NORTHCENTRAL/NORTHEAST

- One Natick Executive Park Natick, MA 01760

TEL 508-655-8833
FAX 508-653-2915

- Greenspoint Tower 2800 W. Higgins Road, Suite 765 Hoffman Estates, IL 60195

TEL 708-519-3945
FAX 708-882-7564

THIRD-PARTY DESIGN CENTERS

SOUTHCENTRAL/SOUTHEAST

- Koos Technical Services, Inc. 385 Commerce Way, Suite 101 Longwood, FL 32750

TEL 407-260-8727
FAX 407-260-6227

- Integrated Silicon Systems Inc. 2222 Chapel Hill Nelson Highway Durham, NC 27713

TEL 919-361-5814
FAX 919-361-2019

NEC

NEC Electronics Inc.
CORPORATEHEADQUARTERS

2880 Scott Boulevard

P.O. Box 58062

Santa Clara, CA 95052
TEL 408-588-6000

For literature, call toll-free 7 a.m. to 6 p.m. Pacific time:

1-800-366-9782

or FAX your request to: 1-800-729-9288

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics Inc. (NECEL). The information in this document is subject to change without notice. ALL DEVICES SOLD BY NECEL ARE COVERED BY THE PROVISIONS APPEARING IN NECEL TERMS AND CONDITIONS OF SALES ONLY. INCLUDING THE LIMITATION OF LIABILITY, WARRANTY, AND PATENT PROVISIONS. NECEL makes no warranty, express, statutory, implied or by description, regarding information set forth herein or regarding the freedom of the described devices from patent infringement. NECEL assumes no responsibility for any errors that may appear in this document. NECEL makes no commitments to update or to keep current information contained in this document. The devices listed in this document are not suitable for use in applications such as, but not limited to, aircraft control systems, aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. "Standard" quality grade devices are recommended for computers, office equipment, communication equipment, test and measurement equipment, machine tools, industrial robots, audio and visual equipment, and other consumer products. For automotive and transportation equipment, traffic control systems, anti-disaster and anti-crime systems, it is recommended that the customer contact the responsible NECEL salesperson to determine the reliabilty requirements for any such application and any cost adder. NECEL does not recommend or approve use of any of its products in life support devices or systems or in any application where failure could result in injury or death. If customers wish to use NECEL devices in applications not intended by NECEL, customer must contact the responsible NECEL sales people to determine NECEL's willingness to support a given application.

[^0]: Note: Some analog functions are currently in development

[^1]: * UDL = User-Defined Logic; measured in 2-input NAND gate equivalents of CMOS-6 family

[^2]: * With L101 as load

