

CB-C7, 3-VOLT 0.8-MICRON CELL-BASED CMOS ASIC

Preliminary October 1993

Description

The CB-C7, 3-volt cell-based product family is intended for low power portables and battery-operated products. A power reduction of up to 60 percent is now possible compared with the CB-C7, 5-volt. The CB-C7, 3-volt is manufactured with a 0.8-micron (drawn) process with two-or three-layer metalization and is offered in 22 I/O ring sizes. Typical applications include handheld terminals, personal digital office assistants, word spellers, cellular phones and a variety of high-volume, portable PC-based applications. The family allows designing complex logic functions, up to 237,000 usable gates of user-defined logic. Megamacro blocks may include industry-standard CPU cores, peripherals, and analog functions — thus enabling complete system-on-a-chip solutions.

The CB-C7 series consists of two types of architectures, a Fast Turn FT-type embedded array and a High Density HD-type full standard cell. The FT-type uses fully-diffused standard cell embedded cores with sea-of-gates user-definable logic. The FT solution offers gate-array-like turn-around times while allowing the incorporation of large embedded functions. Another important advantage is that the FT-type is well-suited for multiple designs built around a common embedded CPU function, such as the V30HL (8086) CPU.

The HD-type is comprised of fully-diffused standard cell architecture for both the embedded cores and the user-defined logic area. This solution offers an optimal die size for economic cost-effective volume production. Full gate delay models are available for both in Verilog[®], a golden simulator, as part of NEC's OpenCAD[®] Design System.

Features

- □ Low voltage cell-based library means power savings of up to 60% over 5V solutions
- □ 1.6 µW/gate per MHz power dissipation at 3 V
- ☐ Standby current I_{DDO} < 150 nA
- Advanced 0.8 μ drawn gate (0.6 μ L_{eff}) length CMOS technology with three-layer metalizations
- Up to 237,000 usable gates on 3-layer HD full standard cell product with 440 I/Os and a pad pitch of 124 μm
- ☐ Extensive embedded core library includes CPU, analog, and video DAC functions
- ☐ Datapath compiler available for multipliers, FIFOs, and register files
- □ Supports leading third-party design tools

Figure 1. Integrated HDD Solution with CB-C7 Cell-Based ASIC and Embedded Megafunctions

Digital Megamacros in Library

Compatible Device	NEC Code	Description
8088	V20HL (NA70108H)	8-bit CPU
8086	V30HL (NA70116H)	16-bit CPU
Z80	NA70008A	Z80™ 8-bit CPU
80C42	NA80C42H	Keyboard Controller
8237A	NA71037	Programmable DMA Controller
8251A	NA71051	Serial Communications Controller
8254	NA71054	Interval Timer
8255A	NA71055	Peripheral Interface
8259A	NA71059	Interrupt Controller
4991A	NA4991A	Real Time Clock
72020	NA72020	Graphics Display Controller

Analog Megamacros in Library

NEC	
Code	Description
XXXA	135 MHz triple 8-bit video DAC
AADA8GPC	8-bit general-purpose DAC
AACP25NA	High-speed (25ns) comparator
AACP80NA	High-speed (80ns) comparator
AACP01UA	General-purpose comparator
AAOP10MA	High-speed operational amplifier
AAOP01MA	General-purpose operative amplifier
AASWGPCA	Analog switch with control
AASWGPTA	Analog switch with control

Note: Some analog functions are currently in development

OpenCAD Design System

CB-C7 is supported by the OpenCAD Design System, an ASIC design environment that merges the best of today's most powerful CAD ASIC software design tools and proprietary tools, such as a floorplanner and module compilers, into a single environment.

Sample design kits are available at no charge to qualified users: contact the NEC ASIC Design Center nearest you for more information. A software license agreement is required.

Digital Megafunctions

In addition to the V30HL/V20HL 8086, 8088 product families and support peripherals, NEC offers complex standard IC functions as well as A/D and D/A converters for multimedia applications. Compiled RAM and ROM are also available to satisfy a myriad of different product applications.

Analog Blocks

NEC is building upon its expertise in analog standard ICs by now offering select members of its analog family as analog megamacros. These megamacros are layed out in the I/O area to maximize die area in the core for digital functions and user-defined logic. This separation of the analog and digital functions and separate analog $\rm V_{DD}$ and $\rm V_{SS}$ line also contributes to better noise isolation.

Digital and analog functions on a CB-C7 cell-based array are tested separately.

Test and Emulation Bus Architecture

The test and emulation bus architecture used for CB-C7 design methodology approach to the testing and emulation of embedded functions. It allows the emulation of the production chip for system validation, reuse of the test bus circuit and use of standard micro IC functional test vectors and system vectors in a modularized fashion. It also provides real-time emulation support and its test bus structure allows testing of on-chip RAM/ROM or analog blocks.

On-Chip Compiled Memory

RAM and ROM blocks can be custom compiled in the CB-C7 design environment.

The RAM and ROM compiler allows ASIC designers to generate silicon-efficient memory blocks of specific size and performance to suit exact system requirements quickly and efficiently.

The table of compilable RAM and ROM, shown on page 4, describes three different MUX ratios along with the minimum and maximum size. For the 16:1 MUX, the minimum word depth is 256 and the minimum bit width is 1. The word depth can increase by 64 words in increments up to 2K and the bit width can increase by 1 bit up to a maximum of 8 bits. The other RAM and ROM configurations are determined in the same fashion.

Typical examples of applications containing digital memory and analog cores and their step size is shown in Figure 2.

3 V Operation

CB-C7 CMOS is ideal for low power, high volume, battery-operated products. The CB-C7 process has been recharacterized to operate at two voltage levels, 5 V \pm 10% and 3.0 V \pm 10%. Not only have macrocells been recharacterized to operate at the lower voltage, but complex megamacros and compiled memory as well.

Figure 2. Typical Application Example (See Table 2)

Trademarks

- ®OpenCAD is a registered trademark of NEC Electronics
- $^{\text{TM}}Z80$ is a trademark of Zilog, Inc.
- [®]Verilog is a registered trademark of Cadence Design System, Inc.
- ™MACRObus is a trademark of NEC Electronics Inc.

Table 1. CB-C7 Step Sizes and Usable Gate Count

				HD-Type Usable Gates ²		FT-Type Usa	ble Gates ²
No.	Step Size	I/O ¹	Total Raw Grids	2-Layer Metal	3-Layer Metal	2-Layer Metal	3-Layer Metal
1	B18	88	35,400	5,930	7,040	3,140	3,860
2	B57	104	49,600	8,840	10,430	4,720	5,760
3	B97	120	66,600	12,390	14,560	6,660	8,070
4	C37	136	86,000	16,530	19,370	8,910	10,760
5	C76	152	107,700	21,150	24,740	11,440	13,780
6	D16	168	131,800	26,460	30,900	14,340	17,230
7	D55	184	158,300	32,230	37,590	17,490	20,990
8	D75	192	172,500	35,390	41,260	19,230	23,050
9	E15	208	202,700	42,160	49,100	22,930	27,450
10	E54	224	235,800	49,360	57,440	26,870	32,140
11	E94	240	270,800	57,290	66,630	31,220	37,300
12	F34	256	307,800	65,810	76,500	35,890	42,850
13	F74	272	348,300	74,730	86,820	40,780	48,660
14	G14	288	390,700	84,410	98,030	46,100	54,970
15	G53	304	435,500	94,480	109,680	51,620	61,520
16	G93	320	482,100	105,330	122,240	57,580	68,590
17	H33	336	531,700	116,770	135,470	63,860	76,040
18	H72	352	583,800	128,550	149,100	70,330	83,710
19	J32	376	662,900	147,680	171,230	80,830	96,170
20	J71	392	720,900	160,890	186,510	88,090	104,770
21	K11	408	781,300	174,960	202,780	95,820	113,930
22	K90	440	907,800	204,550	236,990	112,070	133,200

- Notes: 1. I/O may be configured as VDD/GND
 - 2. Usable gates: equivalent estimated 2-input NAND, will vary depedning ons pecific design

a. 2-layer metal FT = 55% utilization for routing HD = 65% utilization for routing FT = 65% utilization for routing b. 3-layer metal HD = 75% utilization for routing

c. Grid/gate ratio* FT = 4.3 grid/gate ratio HD = 2.8

d. Grid to gate ratio based on conversion from other libraries will be different. Contact NEC Design Center for die size estimation

Based on CMOS-6 L302 cell equivalents

Table 2. Examples of Core Use (Refer to Figure 2)

Application	Core	UDL*	I/O	Step Size	Metalization	Package
Cellular Phone	Z80	40,000	102	E94	3LM	120 TQFP
Wireless or GPS	V20HL	10,000	88	D55	3LM	100 TQFP
Hard Disk Drive	V20HL 71054 71059	3,000	80	D55	2LM	100 TQFP
Graphics Controller	Triple Video DAC HS RAM 256 W x 8 bits x 3	40,000	182	E94	3LM	208 PQFP
Document Scanner	ROM 256 W x 16 bits RAM 64W x 8 bits x 5	3,000	88	C37	2LM	100 QFP

^{*} UDL = User-Defined Logic; measured in 2-input NAND gate equivalents of CMOS-6 family

Table 3. Compilable RAM, ROM and Datapath Elements for CB-C7

Compiled SRAM						
 Single port, asynchronous operation 						
	Increment					
16:1 Column MUX	256 x 1	2K x 8	64 words, 1 bit			
8:1 Column MUX	128 x 1	1K x 16	32 words, 1 bit			
4:1 Column MUX	64 x 1	512 x 32	16 words, 1 bit			
			_			

Compiled High-Speed SRAM

- Single port, asynchronous high speed operation
- Speed: 12.6ns (typ) (512W x 8 bit)

	Min Size	Max Size	Increment
8:1 Column MUX	16 x 1	2K x 20	16 words, 1 bit
Example: For a 8:1 colu	ımn MUX min	imum size is 1	6 x 1. Increments

Example: For a 8:1 column MUX minimum size is 16 x 1. Increments can thus be 16, 32, 48 words up to 2K max. Bit size can be a minimum of 1 bit, one bit at time increments to 20 bits max.

Examples for Compiled High-Speed SRAM: For a 8:1 column MUX, minimum size is 16 x 1. Increments can thus be 16, 32, 48, words up to 2K max. Bit size can be minimum of 1 bit, one bit at a time in increments to 20 bits max.

Compiled Dual Port RAM						
Dual port, asynchronous operation						
	, ,	•				
– Sp	eea: 43ns (ty)	o) (512W x 8 b	oit)			
	Min Size	Max Size	Increment			
8:1 Column MUX	16 x 1	2K x 32	16 words, 1 bit			
	Compile	d ROM				
– Sir	ngle port, asyr	nchronous ope	ration			
- Sp	eed: 63ns (typ	o) (512W x 8 b	oit)			
	Min Size	Max Size	Increment			
32:1 Column MUX	512 x 1	32K x 16	512 words, 1 bit			
16:1 Column MUX	256 x 2	16K x 32	256 words, 1 bit			
8:1 Column MUX	128 x 4	8K x 64	128 words, 2 bits			
	Datapath	Modules				
	Min Size	Max Size	Increment			
Multiplier	6 x 6	32 x 32	2 bits			
Register File	8 x 2	256 x 32	4 words, 1 bit			
FIFO	8 x 2	256 x 32	2 words, 1 bit			

^{*} Please check with the Design Center for exact specifications and availability.

Absolute Maximum Ratings

Power supply voltage, V _{DD}	-0.5 to +6.5 V
Input/output voltage, V _I / V _O	-0.5 V to V _{DD} + 0.5 V
Output current, I _O	
I_{OL} (min) = 2.2 mA (typ)	8 mA
I_{OL} (min) = 4.4 mA (typ)	16 mA
I_{OL} (min) = 6.6 mA (typ)	24 mA
Operating temperature, T _{OPT}	-40 to +85°C
Storage temperature, T _{STG}	−65 to +150°C

Caution: Exposure to absolute maximum ratings for extended periods may affect device reliability; exceeding the ratings could cause permanent damage. The device should not be operated outside the recommended operating conditions.

Input/Output Capacitance

 $V_{DD} = V_{I} = 0 \text{ V}; f = 1 \text{ MHz}$

Terminal	Symbol	Тур	Max	Unit
Input	C _{IN}	10	20	pF
Output	C _{OUT}	10	20	pF
I/O	C _{I/O}	10	20	pF

Note:

(1) Values include package pin capacitance.

Power Consumption

Description	Limits (max)	Unit	Test Conditions
Internal cell (L30)	2) 1.6	μW/MHz	F/O = 2; L = 2 mm

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Power supply voltage	V_{DD}	2.7	3.3	V
Ambient temperature	T _A	- 40	+85	°C
Input voltage	V _I	0	V _{DD}	V
High-level input voltage	V _{IH}	0.7 V _{DD}	V _{DD}	V
Low-level input voltage	V _{IL}	0.3 V _{DD}	V _{DD}	V
Input rise or fall time (normal input)	t _{RI} , t _{FI}	0	200	ns
Input rise or fall time (Schmitt-trigger input)	t _{RI} , t _{FI}	0	10	ms
Positive Schmitt-trigger voltage	V _P	1.8	4.0	V
Negative Schmitt-trigger voltage	V _N	0.6	3.1	V
Hysteresis voltage	V _H	0.3	1.5	V

Note: The rise/fall time given for a Schmitt-trigger input buffer varies depending on the operating environment. Simultaneous switching of output buffers should be analyzed before deciding to use a Schmitt-trigger input buffer.

AC Characteristics

 $V_{DD} = 3 \text{ V} \pm 10\%; \ T_{A} = -40 \text{ to } +85^{\circ}\text{C}$

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Internal toggle frequency	f _{TOG}	52			MHz	D-F/F; F/O = 2
Delay time, 2-input NAND Gate*						
Standard gate (F302) HD-type	t _{PD}		520 (HL)		ps	F/O = 1; L = 2 mm
Standard gate (F302) HD-type	t _{PD}		870 (HL)		ps	F/O = 2; L = 1 mm
Low power gate (L302) HD-type	t _{PD}		680 (HL)		ps	F/O = 1; L = 0 mm
Low power gate (L302) HD-type	t _{PD}		1310 (HL)		ps	F/O = 2; L = 1 mm
Delay time, Buffer						
Input buffer (FI01)	t _{PD}		760		ps	F/O = 2; L = 2 mm
Output buffer (FO01)	t _{PD}		4800		ps	$C_L = 15 \text{ pF}, IOL = 4\text{mA}$
Rise and Fall Times						
Output rise time (FO01)	t _R		TBD		ps	$C_L = 15 \text{ pF, IOL} = 2.2 \text{ mA}$
Input fall time (FO01)	t_{F}		TBD		ps	C _L = 15 pF, IOH= -2mA

^{*} With L101 as load

5

DC Characteristics $V_{DD} = 3 \text{ V} \pm 10\%; T_A = -40 \text{ to } +85^{\circ}\text{C}$

Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Static current (Note 1)	I _L		TBD	TBD	μA	$V_I = V_{DD}$ or GND
Input leakage current						
Normal input	I _I		±10 ⁻⁵	±8	μΑ	$V_I = V_{DD}$ or GND
50 kΩ pull-up	I _I	TBD	TBD	TBD	μΑ	$V_I = GND$
5 kΩ pull-up	I _I	TBD	TBD	TBD	mA	V _I = GND
50 kΩ pull-down	I _I	TBD	TBD	TBD	μΑ	$V_I = V_{DD}$
Off-state output leakage current						
Normal Input	I _{OZ}		±10 ⁻⁵	± 8	μA	$V_O = V_{DD}$ or GND
50 kΩ pull-up	I _{OZ}	TBD	TBD	TBD	μA	V _I = GND
5 kΩ pull-up	I _{OZ}	TBD	TBD	TBD	μA	V _I = GND
50 kΩ pull-down	I _{oz}	TBD	TBD	TBD	μA	$V_I = V_{DD}$
Low-level output voltage (CMOS)						
	V _{OL}			0.4	V	I _{OL} = 2.2mA
	V _{OL}			0.4	V	I _{OL} = 4.4 mA
	V _{OL}			0.4	V	I _{OL} = 6.6 mA
High-level output voltage	V _{OH}	V _{DD} -0.4			V	I _{OH} = -1.1mA
	V _{OH}	V _{DD} -0.4			V	I _{OH} = -2.2mA
	V _{OH}	V _{DD} -0.4			V	$I_{OH} = -3.3 \text{mA}$

Notes:

⁽¹⁾ The maximum value reflects the use of pull-up/pull-down resistors and oscillator blocks. Contact an NEC ASIC Design Center for assistance in calculation.

⁽²⁾ CMOS-level output buffer (V_{DD} = 5 V \pm 10%, T_A= -40°C to +85°C)

Table 4. Package Options

Pad Ring Step Sizes	B18	B57	B97	C37	C76	D16	D55	D75	E15	E54	E9
Package Type											
Plastic Quad Flatpack (QFP)											
44-pin (0.8 mm lead pitch)	Α	Α	А	Α	Α	Α	_	_	_	-	_
52-pin (1 mm lead pitch)	Α	Α	Α	Α	Α	Α	Α	_	_	-	_
64-pin (1 mm lead pitch)	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
80-pin (0.8 mm lead pitch)	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α
100-pin (0.65 mm lead pitch)	_	Α	Α	Α	Α	Α	Α	Α	Α	Α	A
120-pin (0.8 mm lead pitch)	-	_	Α	Α	Α	Α	Α	Α	Α	Α	Α
136-pin (0.65 mm lead pitch)	_	_	Α	Α	Α	Α	Α	Α	Α	Α	A
160-pin (0.65 mm lead pitch)	_	_	_	_	_	Α	Α	Α	Α	Α	A
160 ¹ -pin (0.65 mm lead pitch)	_	_	_	_	_	_	_	Α	Α	Α	A
160 ² -pin (0.65 mm lead pitch)	-	_	-	_	-	-	-	Α	Α	Α	A
Plastic Quad Flatpack (QFP-FP)											
100-pin (0.5 mm lead pitch)	-	Α	А	Α	Α	Α	А	Α	Α	Α	/
120-pin (0.5 mm lead pitch)	-	-	Α	Α	Α	Α	Α	Α	Α	Α	,
144-pin (0.5 mm lead pitch)	-	_	_	Α	Α	Α	Α	Α	Α	Α	1
160-pin (0.5 mm lead pitch)	_	_	_	_	_	Α	Α	Α	Α	Α	,
160 ² -pin (0.5 mm lead pitch)	_	_	_	_	_	_	_	Α	Α	Α	,
176-pin (0.5 mm lead pitch)	-	_	-	-	-	Α	Α	Α	Α	Α	1
1761-pin (0.5 mm lead pitch)	_	_	_	_	_	_	_	_	_	Α	,
176 ² -pin (0.5 mm lead pitch)	_	_	_	_	_	_	_	_	_	Α	,
208-pin (0.5 mm lead pitch)	_	-	-	-	-	-	-	-	-	-	,
Thin Plastic Quad Flatpack (TQF	Р)										
64-pin (0.5 mm lead pitch)	Α	Α	Α	Α				_			-
80-pin (0.5 mm lead pitch)	Α	Α	Α	Α	_	_	_	_	_	_	-
1001-pin (0.5 mm lead pitch)	-	Α	Α	Α	Α	Α	Α	Α	Α	-	-
Plastic Leaded Chip Carrier (PLC	CC)										
68-pin (50 mils lead pitch)	_	_	_	Α	Α	Α	Α	Α	Α	Α	-
84-pin (50 mils lead pitch)	_	_	_	Α	Α	Α	Α	Α	Α	Α	-

^{1 =} Cu lead frame

Note: NEC reserves the right to alter these package options based on the results of qualification. Each cell-based design/package combination must be cleared for manufacturing suitability. For the latest package availability for CB-C7, please contact your local NEC ASIC Design Center.

Typical CB-C7 Package Marking

CB-C7 Numbering System

Part Number	Description
μPD93XXX	Contains logic only or logic plus RAM and/or ROM
μPD94XXX	Contains the same as µPD93XXX but with ROM code change
μPD95XXX	Same as µPD93XXX but contains megamacro blocks, such as a 710XXX or V20HL/V30HL
μPD96XXX	Same as µPD95XXX but with a ROM code change

A = Available or under development

^{2 =} Cu lead frame and heat sink

^{- =} Unavailable

Table 4. Package Options (Cont'd)

Pad Ring Step Size	F34	F74	G14	G53	G93	H33	H72	J32	J71	K11	K90
Package Type											
Plastic Quad Flatpack (QFP)											
64-pin (1 mm lead pitch)	Α	-	-	_	_	_	_	-	_	_	_
80-pin (0.8 mm lead pitch)	Α	-	-	-	-	-	-	-	-	_	-
100-pin (0.65 mm lead pitch)	Α	-	-	-	_	-	-	-	-	-	-
120-pin (0.8 mm lead pitch)	Α	Α	Α	Α	Α	Α	Α	Α	_	_	_
136-pin (0.65 mm lead pitch)	Α	Α	Α	Α	Α	Α	Α	Α	_	_	_
160-pin (0.65 mm lead pitch)	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	A
160¹-pin (0.65 mm lead pitch)	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	A
160 ² -pin (0.65 mm lead pitch)	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	A
184¹-pin (0.65 mm lead pitch)	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	A
Plastic Quad Flatpack (QFP-FP)											
100-pin (0.5 mm lead pitch)	Α	Α	_	_	_	_	_	_	_	_	-
120-pin (0.5 mm lead pitch)	Α	Α	Α	Α	Α	Α	Α	_	_	_	-
144-pin (0.5 mm lead pitch)	Α	Α	Α	Α	Α	Α	Α	-	-	-	-
160-pin (0.5 mm lead pitch)	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	A
160 ² -pin (0.5 mm lead pitch)	Α	Α	Α	Α	Α	Α	Α	_	_	_	-
176-pin (0.5 mm lead pitch)	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	1
1761-pin (0.5 mm lead pitch)	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	,
176 ² -pin (0.5 mm lead pitch)	Α	Α	Α	Α	Α	Α	Α	_	_	_	-
208-pin (0.5 mm lead pitch)	Α	Α	Α	Α	Α	Α	Α	Α	Α	Α	/
2081-pin (0.5 mm lead pitch)	_	_	Α	Α	Α	Α	Α	Α	Α	Α	,
208 ² -pin (0.5 mm lead pitch)	_	_	Α	Α	Α	Α	Α	Α	Α	Α	,
240¹-pin (0.5 mm lead pitch)	-	_	Α	Α	Α	Α	Α	Α	Α	Α	1
256¹-pin (0.4 mm lead pitch)	_	_	Α	Α	Α	Α	Α	Α	Α	Α	,
272 ¹ -pin (0.5 mm lead pitch)	_	_	_	_	_	_	_	Α	Α	Α	A
304¹-pin (0.5 mm lead pitch)	_	_	_	_	_	_	_	_	_	Α	,

^{1 =} Cu lead frame

A = Available or under development

- = Unavailable

Note: NEC reserves the right to alter these package options based on the results of qualification. Each cell-based design/package combination must be cleared for manufacturing suitability. For the latest package availability for CB-C7, please contact your local NEC ASIC Design Center.

Figure 3. Popular CB-C7 Package 100-pin TQFP — ■14 mm Body Size

^{2 =} Cu lead frame and heat sink

NEC's ASIC Design System

NEC supports its ASIC products with a comprehensive CAD system that significantly reduces the time and expense usually associated with the development of semi-custom devices. NEC's OpenCAD Design System is a front-end to back-end ASIC design package that merges several advanced CAE/CAD tools into a single structure. The design flow combines tools for floorplanning, logic synthesis, automatic test generation, accelerated fault-grading, full timing simulation, and advanced place-and-route algorithms. RAM/ROM and Datapath Compilers are also available for use in CB-C7 designs.

A top-down modeling methodology is possible by means of HDL specification. Designers can concentrate their design effort at a higher level of abstraction, specifying, modeling, and simulating their designs at a systems level. This leaves the details of the gate-level implementation to the synthesis tools. After having verified proper functionality, designers are free to explore functional and architectural trade-offs, and can optimize chip performance while minimizing chip area. An engineer can

evaluate several architectures and select the best solution before committing to silicon. The design flow is shown below.

One of the key benefits of the ASIC design flow is that sign-off simulation can be accomplished at the customer's site since NEC offers designers a choice of simulators with the "golden simulator" status. Golden simulator status means that after receiving the post place-and-route simulation results from the customer, NEC can proceed directly to photomask production, bypassing the additional post-simulation steps.

To simplify simulation and testing of embedded cores and megamacros, full Verilog gate delay models are provided for all megamacros. The megamacros are then fully tested with a standard set of production test vectors.

The floorplanner tool provides a realistic estimate of wire length by grouping hierarchical blocks in a specific physical location on the chip. This allows for more accurate simulation results by minimizing critical path interconnect delays. The floorplanner also allows for placement of fully-diffused functions such as memory

Figure 4. CB-C7 HDL-Based Design Flow

and microprocessors. Graphical I/O assignment is available with the floorplanner. The floorplanner generates a delay file for post-floorplanner simulation, as shown in the design flow.

The ECO option allows the designer to make minor corrections in the design without requiring an entirely new placement and routing of the device. The tool ensures that relatively small changes, such as connectivity changes, will not greatly impact the timing of the current design. This can vastly improve turnaround time for the design.

NEC also incorporates proprietary tools to facilitate the design process. A single delay calculator is used for all CAE platforms to ensure consistent timing and simula-

tion results. A comprehensive design rule check, DRC, program reports design rule violations as well as chip utilization statistics for the design netlist. The generated report contains information such as cell count and usage rate as well as net and total pin counts. Unused input pins, violations in pin naming conventions, and exceeded fan-out limits are examples of the design rule violations reported by this program.

Sample design kits are available at no charge to qualified users: Contact an NEC ASIC design center for more information. NEC's ASIC Design Centers are listed on the back of this data sheet. A software license agreement is required.

Cell Library List

The CB-C7 standard cell library offers a variety of blocks, macrocells and megafunctions. SSI library elements shown include gates, flip-flop circuits, and shift registers. The names and functions of these blocks are designed to be compatible with those of the CMOS-7 and CMOS-6 families.

Block List

Block Name	Description	I _{OL} (mA)	Area ¹ (grids)
	Interface Blocks		
Input E	Buffers		
FI01	Input buffer, CMOS in	=	12/6
Outpu	t Buffers		
FO01	Output buffer, CMOS out	4	8/5
FO02		8	16/9
FO03		12	16/9
B007	Output buffer, CMOS 3-state out	8	24/15
Open	Drain Output Buffers		
EXT1	Output buffer, N-ch open drain	4	8/4
Bi-dire	ectional I/O Buffers		
B001	I/O buffer, CMOS in, CMOS 3-state out 50 k Ω pull-up res.	8	36/21

Function Blocks - Normal Power

Inverter (F/O = 25) (FT) Inverter (F/O = 25) (FT) Inverter (x3) Inverter (x4) Inverter (x5)	4/3 8/5 -/1
Non-inverting buffer (F/O = 25) (FT) Non-inverting buffer (F/O = 51) (FT) Non-inverting buffer Non-inverting buffer Non-inverting buffer	8/5 12/7 -/9
Delay gate Delay gate	24/13 40/22
	Inverter (F/O = 25) (FT) Inverter (x3) Inverter (x4) Inverter (x5) Non-inverting buffer (F/O = 25) (FT) Non-inverting buffer (F/O = 51) (FT) Non-inverting buffer Non-inverting buffer Non-inverting buffer Delay gate

Block Name	Description	Area ¹ (grids)
	Function Blocks - Normal Power (C	ont)
NOR Gat	es	
F202 F203 F204 F208	2-input NOR 3-input NOR 4-input NOR 8-input NOR	8/5 12/7 16/10 24/18
F222 F223 F224	2-input NOR, power 3-input NOR, power 4-input NOR, power	16/9 24/13 32/17
OR Gates	S	
F212 F213 F214 F232 F233 F234	2-input OR 3-input OR 4-input OR 2-input OR, power 3-input OR, power 4-input OR, power	8/5 12/6 12/7 12/7 16/8 16/9
NAND G	ates	
F302 F303 F304 F305	2-input NAND 3-input NAND 4-input NAND 5-input NAND	8/5 12/7 16/9 20/11
F306 F308 F322 F323	6-input NAND 8-input NAND 2-input NAND, power 3-input NAND, power	20/12 24/14 16/9 24/13
F324	4-input NAND, power	32/17
AND Gat	es	
F312 F313 F314 F332 F333 F334	2-input AND 3-input AND 4-input AND 2-input AND, power 3-input AND, power 4-input AND, power	8/5 12/6 12/7 12/7 16/8 16/9
AND-NO	R Gates	
F421 F422 F423 F424	2-wide 1-2-input AND-OR inverter 3-wide 1-1-2-input AND-OR inverter 2-wide 1-3-input AND-OR inverter 2-wide 2-2-input AND-OR inverter	12/7 16/10 16/9 16/9
F425 F426 F429 F442	3-wide 2-2-2-input AND-OR inverter 2-wide 3-3-input AND-OR inverter 4-wide 2-2-2-2-input AND-OR inverter 2-wide 4-4 input AND-OR inverter	24/14 24/13 32/18 32/17
F462	3-wide 1-2-3 input AND-OR inverter	24/14

Block Name	Description	Area ¹ (grids)	Block Name	Description	Area ¹ (grids)		
Function Blocks - Normal Power (Cont)		Function Blocks - Normal Power (Cont)					
OR-NANI	D Gates		Latches (Cont)				
F431 F432 F433 F434	2-wide 1-2-input OR-AND inverter 3-wide 1-1-2-input OR-AND inverter 2-wide 1-3-input OR-AND inverter 2-wide 2-2-input OR-AND inverter	12/7 16/10 16/9 16/9	F604 F605 F901 F902	D-latch with G driver low D-latch with G low, Reset low 4-bit D-latch 8-bit D-latch	24/14 28/16 80/45 152/85		
F435	2-wide 2-3-input OR-AND inverter	20/11	Flip-Flop	os			
F436 F454	2-wide 3-3-input OR-AND inverter 4-wide 2-2-2-input OR-AND inverter	24/13 32/18	F596 F611	Synchronous R-S F/F with Set-Reset D-F/F	44/28 32/18		
Parity Ge	enerators		F614 F617	D-F/F with Set-Reset D-F/F with Set-Reset low	40/24 40/24		
F581 F582 EX-OR G	8-bit odd parity generator 8-bit even parity generator sate	76/48 76/48	F631 F637 F641	D-F/F C low D-F/F C low with Set-Reset low D-F/F, buffered	32/18 40/24 32/22		
F511	Exclusive-OR	16/9	F644	D-F/F with Set-Reset, buffered	40/28		
EX-NOR F512	Gate Exclusive-NOR	16/9	F647 F661 F667 F714	D-F/F with Set-Reset low, buffered D-F/F C low, buffered D-F/F C low with Set-Reset low, buffered Toggle F/F with Set-Reset	40/28 32/22 40/28 36/23		
Adders			F717	Toggle F/F with Set-Reset low	36/23		
F521 F523	1-bit full-adder 4-bit binary full-adder	36/24 128/89	F737 F744 F747	Toggle low F/F with Set-Reset low Toggle F/F with Set-Reset, buffered Toggle F/F with Set-Reset low, buffered	36/23 36/27 36/27		
Buffers			F767	Toggle low F/F with Set-Reset low, buffered	36/27		
F531 F532 F533	3-state buffer with Enable 3-state buffer with Enable low 3-state buffer	20/11 20/11 36/14	F771 F774 F777	J-K F/F, buffered J-K F/F with Set-Reset, buffered J-K F/F with Set-Reset low, buffered	40/24 48/30 48/30		
Decoder:		00/14	F781 F787	J-K F/F C low, buffered J-K F/F C low with Set-Reset low, buffered	40/24 48/30		
F561 F981 F982	2-to-4 decoder 2-to-4 decoder with Enable low 3-to-8 decoder with Enable low	40/24 52/31 104/60	F791 F792	Toggle F/F with Set-Reset and Toggle Enable Toggle low F/F with Set-Reset and Toggle Enable low			
Chiff Das	viotoro		F922	4-bit D-F/F with Reset	136/75		
Shift Reg F911 F912 F913 F914	4-bit shift register with Reset 4-bit serial/parallel shift register 4-bit parallel shift register with Reset low, Load 4-bit shift register	136/75 144/80 160/92 112/61	F924 F615 F616 S999	4-bit D-F/F D-F/F with RB D-F/F with SB 2-to-1 Data Slector (Scan path)	112/61 -/21 -/22 -/10		
Multiplex	ers		Counter	s			
L655	2-to-1 multiplexer (no enable/low drive)	-/7	F961	4-bit synchronous binary counter with Reset low, buffered	240/158		
F569 F570 F571	8-to-1 multiplexer 4-to-1 multiplexer 2-to-1 multiplexer	72/46 36/27 20/16	F962	4-bit synchronous binary up counter with Reset low	152/102		
F572	Quad 2-to-1 multiplexer	76/35	Compara		400/00		
Latches			F985	4-bit magnitude comparator	128/82		
F595 F601	R-S latch D-latch	20/14 24/14	Miscella	neous			
F602 F603	D-latch with Reset D-latch with Reset low	24/15 28/16	F091	H, L level Generator			
F603	D-latch with Reset low	28/16		,			

Note (1): Grids shown are for FT/HD types respectively.

Block	Description	Area ¹	Block	Description	Area ¹
Name		(grids)	Name	·	(grids)
	Function Blocks - Low Power			Function Blocks - Low Power (Cont)	
Inverters			Exclusiv	e-OR	
L101	(F/O = 25) (FT)	4/2	L511	EX-OR	12/8
Buffers			Exclusiv	e-NOR	
L111	Non-inverting buffer (F/O = 25) (FT)	4/3	L512	EX-NOR	12/8
NOR Gat	es		Decoder		
L202	2-input NOR	4/3	L561	2-to-4 Decoder	24/17
L203	3-input NOR	8/4	L981	2-to-4 Decoder with Enable	68/42
L204	4-input NOR	8/5	L982	3-to-8 Decoder with Enable	68/42
OR Gates			Multiplex	ker	
L212	2-input OR	8/4	L571	2-to-1 Multiplexer	16/10
L213 L214	3-input OR 4-input OR	8/5 12/6	L572	Quad 2-to-1 Multiplexer	40/27
NAND Ga	•		Latches		
			L901	4-Bit Latch	48/33
L302 L303	2-Input NAND 3-Input NAND	4/3 8/4	L902	8-Bit Latch	88/61
L303	4-Input NAND	8/5	Ol. 16 D -		
L305	5-Input NAND	12/6	Shift Reg	gisters	
L306	6-Input NAND	8/7	L911	4-Bit Shift Register with Reset	104/60
2000	o input to utb	0/1	L912 L913	4-Bit Serial/Parallel Shift Register 4-Bit Parallel in Shift Register with Reset Low	112/60 128/80
AND Gate	es		2010	1 Bit 1 drailer in Crime Progressor With Product 2000	120/00
L312	2-Input AND	8/4	Flip Flop	os .	
L313	3-Input AND	8/5	L922	4-Bit D-F/F with Reset	104/63
L314	4-Input AND	12/6	L924	4-Bit D-F/F	80/49
AND-NO	R Gates		Megafun	ctions	
L421	2-Wide, 1-2-Input AND-OR Inverter	8/4	70108H	V20HL 8-bit Microprocessor	TBA
L422	3-Wide 1-1-2-Input AND-OR Inverter	8/5	70116H	V30HL 16-bit Microprocessor	TBA
L423	2-Wide, 1-3-Input AND-OR Inverter	8/5	78350	78K3 16-bit Microprocessor	TBA
L424	2-Wide, 2-2-Input AND-OR Inverter	8/5	70008A	Z80 8-bit Microprocessor	TBA
L425 L426	3-Wide, 2-2-2-Input AND-OR Inverter 2-Wide, 3-3-Input AND-OR Inverter	12/8 12/7	72065B	765 Floppy Disk Controller	78,580
L420 L429	4-Wide, 2-2-2-Input AND-OR Inverter	16/10	71037	8237A Programmable DMA Controller	31,780
L442	2-Wide, 4-4-Input AND-OR Inverter	12/9	71051 71054	8251A USART 8254 Interval Timer	17,750 16,170
L462	3-Wide, 1-2-3-Input AND-OR Inverter	12/8	71055	8255A Peripheral Interface	9540
OR-NANI	D Gates		71059 71088	8259A Interrupt Controller 8288 System Bus Controller	7510 TBA
L431	2-Wide, 1-2-Input OR-AND Inverter	8/4	4991A	Real Time Clock	TBA
L432	3-Wide, 1-1-2-Input OR-AND Inverter	8/5			
L433	2-Wide, 1-3-Input OR-AND Inverter	8/5			
OR-AND	Gates				
L434	2-Wide, 2-2-Input OR-AND Inverter	8/5			
L435	2-Wide, 2-3-Input OR-AND Inverter	12/6			
L436	2-Wide, 3-3-Input OR-AND Inverter	12/7			
L454	4-Wide, 2-2-2-Input OR-AND Inverter	16/10			

Note (1): Grids shown are for FT/HD types respectively.

Notes:

Notes:

NEC ASIC DESIGN CENTERS

WEST

401 Ellis Street
 P.O. Box 7241
 Mountain View, CA 94039

TEL 415-965-6533 FAX 415-965-6788

 One Embassy Centre 9020 S.W. Washington Square Road, Suite 400 Tigard, OR 97223

TEL 503-671-0177 FAX 503-643-5911

SOUTH CENTRAL/SOUTHEAST

 16475 Dallas Parkway, Suite 380 Dallas, TX 75248

TEL 972-250-4522 FAX 972-931-8680

 Research Triangle Park 2000 Regency Parkway, Suite 455 Cary, NC 27511

TEL 919-460-1890 FAX 919-469-5926

NORTH CENTRAL/NORTHEAST

 One Natick Executive Park Natick, MA 01760

TEL 508-655-8833 FAX 508-653-2915

 Greenspoint Tower 2800 W. Higgins Road, Suite 765 Hoffman Estates, IL 60195

TEL 708-519-3945 FAX 708-882-7564

THIRD-PARTY DESIGN CENTERS

SOUTH CENTRAL/SOUTHEAST

 Koos Technical Services, Inc. 385 Commerce Way, Suite 101 Longwood, FL 32750

TEL 407-260-8727 FAX 407-260-6227

Integrated Silicon Systems Inc.
 2222 Chapel Hill Nelson Highway Durham,
 NC 27713

TEL 919-361-5814 FAX 919-361-2019

For literature, call toll-free 7 a.m. to 6 p.m. Pacific time:

1-800-366-9782

or FAX your request to: 1-800-729-9288

CORPORATE HEADQUARTERS 2880 Scott Boulevard

P.O. Box 58062 Santa Clara, CA 95052 TEL 408-588-6000 No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Electronics Inc. (NECEL). The information in this document is subject to change without notice. ALL DEVICES SOLD BY NECEL ARE COVERED BY THE PROVISIONS APPEARING IN NECEL TERMS AND CONDITIONS OF SALES ONLY. INCLUDING THE LIMITATION OF LIABILITY, WARRANTY, AND PATENT PROVISIONS. NECEL makes no warranty, express, statutory, implied or by description, regarding information set forth herein or regarding the freedom of the described devices from patent infringement. NECEL assumes no responsibility for any errors that may appear in this document. NECEL makes no commitments to update or to keep current information contained in this document. The devices listed in this document are not suitable for use in applications such as, but not limited to, aircraft control systems, aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. "Standard" quality grade devices are recommended for computers, office equipment, communication equipment, test and measurement equipment, machine tools, industrial robots, audio and visual equipment, and other consumer products. For automotive and transportation equipment, traffic control systems, anti-disaster and anti-crime systems, it is recommended that the customer contact the responsible NECEL salesperson to determine the reliability requirements for any such application and any cost adder. NECEL does not recommend or approve use of any of its products in life support devices or systems or in any application where failure could result in injury or death. If customers wish to use NECEL devices in applications not intended by NECEL, customer must contact the responsible NECEL sales people to determine NECEL's willingness to support a given application.